33. Notes on Some Classical Series Associated with Discrete Subgroups of $U(1, n ; C)$ on $\partial B^{n} \times \partial B^{n} \times \partial B^{n}$

By Shigeyasu Kamiya
Department of Mechanical Engineering, Okayama University of Science (Communicated by Shokichi Iyanaga, m. J. a., June 9, 1992)

Let $U(1, n ; C)$ be the group of unitary transformations. In the previous paper [2], we discussed the action of discrete subgroups of $U(1, n ; C)$ on $\partial B^{n} \times \partial B^{n} \times \cdots \times \partial B^{n}$, where ∂B^{n} is the boundary of the complex unit ball. In [4], P. J. Nicholls considered the convergence of some series associated with discrete subgroups of Möbius transformations on the products of the boundary of the unit ball in real n-space.

Our purpose is to show two theorems on some classical series associated with discrete subgroups of $U(1, n ; C)$ acting on $\partial B^{n} \times \partial B^{n} \times \partial B^{n}$. Throughout this paper G denotes a discrete subgroup of $U(1, n ; C)$. Let $\left\{g_{1}, g_{2}, \cdots\right\}$ be a complete list of elements of G. If g_{k} is an element of G, then g_{k} is represented by a matrix $\left(a_{i j}^{(k)}\right)_{1 \leq i, j \leq n+1}$. Let $x=\left(x_{1}, \cdots, x_{n}\right), y=$ $\left(y_{1}, \cdots, y_{n}\right)$ and $z=\left(z_{1}, \cdots, z_{n}\right)$ be points in ∂B^{n}.

Theorem 1. The series

$$
\sum_{g_{k} \in G}\left(\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\left\|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right\| a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|\right)^{-2 n}
$$

converges for almost every triple (x, y, z) in $\partial B^{n} \times \partial B^{n} \times \partial B^{n}$.
Theorem 2. If $\sum_{g_{k} \in G}\left|a_{11}^{(k)}\right|^{-m}$ converges for $m>0$, then the series

$$
\sum_{g_{k} \in G}\left(\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\left\|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right\| a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|\right)^{-m}
$$

converges for every distinct points x, y and z in ∂B^{n}.
We shall give our proofs.
Proof of Theorem 1. Let $\Gamma\left(g_{k}\right)$ be the set of (x, y, z) in $\partial B^{n} \times \partial B^{n} \times \partial B^{n}$ for which

$$
\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\left\|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right\| a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|>1 .
$$

Set

$$
F=\bigcap_{g_{k} \neq i d} \Gamma\left(g_{k}\right) .
$$

It follows from [2, Theorem 11] that F is a fundamental set for the group action on $\partial B^{n} \times \partial B^{n} \times \partial B^{n}$. Since F is of positive measure and has no G equivalent points,

$$
\sum_{g_{k} \in G} \sigma^{*}\left(g_{k}(F)\right)<\infty,
$$

where σ^{*} is the product measure on $\partial B^{n} \times \partial B^{n} \times \partial B^{n}$ derived from the measure σ on ∂B^{n} (see [2, p. 288]). For $(x, y, z) \in F$

$$
\sum_{g_{k} \in G} \sigma^{*}\left(g_{k}(F)\right)=\sum_{g_{k} \in G} \int_{g_{k}(F)} d \sigma^{*}
$$

$=\int_{F} \sum_{g_{k} \in G}\left(\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\left\|\alpha_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right\| \alpha_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|\right)^{-2 n} d \sigma(x) d \sigma(y) d \sigma(z)$.
Hence the series

$$
\sum_{g_{k} \in G}\left(\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\left\|\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1} \|\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|\right)^{-2 n}\right.\right.\right.
$$

converges almost everywhere in F. Thus our proof is complete.
Let $s=\left(s_{1}, \cdots, s_{n}\right)$ and $t=\left(t_{1}, \cdots, t_{n}\right)$ be points of $\overline{B^{n}}$. We define

$$
d^{*}(s, t)=\left|1-\sum_{j=1}^{n} \overline{s_{j}} t_{j}\right|^{1 / 2}
$$

(see [2, p. 288] and [3, Proposition 3.2]).
To prove Theorem 2 we prepare two lemmas.
Lemma 3. Let p_{k} be a point such that $g_{k}\left(p_{k}\right)=0$. Define

$$
\delta=\min \left\{d^{*}(x, y), d^{*}(y, z), d^{*}(z, x)\right\}
$$

where x, y and z are distinct points in ∂B^{n}. Then at least one of $d^{*}\left(p_{k}, x\right)$, $d^{*}\left(p_{k}, y\right)$ and $d^{*}\left(p_{k}, z\right)$ is greater than $\delta / 2$.

Proof. Suppose that all three are smaller than $\delta / 2$. Then we have

$$
\begin{aligned}
& d^{*}(x, y) \leq d^{*}\left(p_{k}, x\right)+d^{*}\left(p_{k}, y\right)<\delta, \\
& d^{*}(y, z) \leq d^{*}\left(p_{k}, y\right)+d^{*}\left(p_{k}, z\right)<\delta, \\
& d^{*}(z, x) \leq d^{*}\left(p_{k}, z\right)+d^{*}\left(p_{k}, x\right)<\delta .
\end{aligned}
$$

This is a contradiction.
Lemma 4. Let g_{k} be an element of G with $g_{k}\left(p_{k}\right)=0$. Then

$$
\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right|^{-1}\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|^{-1} \leq 2 d^{*}(y, z)^{-2} .
$$

Proof. First we note that $p_{k}=\left(-a_{12}^{(k)} / a_{11}^{(k)},-a_{13}^{(k)} / a_{11}^{(k)}, \ldots, \overline{\left.-a_{1, n+1}^{(k)} / a_{11}^{(k)}\right)}\right.$ and $d^{*}\left(g_{k}(y), g_{k}(z)\right) \leq \sqrt{2}$. Using [2, Lemma 5], we see

$$
\begin{aligned}
\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right|^{-1}\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|^{-1} & =\frac{d^{*}\left(p_{k}, p_{k}\right)^{2}}{d^{*}\left(p_{k}, y\right)^{2} d^{*}\left(p_{k}, z\right)^{2}} \\
& =\frac{d^{*}\left(g_{k}(y), g_{k}(z)\right)^{2}}{d^{*}(y, z)^{2}} \\
& \leq 2 d^{*}(y, z)^{-2} .
\end{aligned}
$$

Thus our lemma is proved.
Now we are ready to prove Theorem 2.
Proof of Theorem 2. Using Lemma 3, we may assume that $d^{*}\left(p_{k}, x\right)$ $>\delta / 2$. Then we see

$$
d^{*}\left(p_{k}, x\right)^{2}=\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\right|\left|a_{11}^{(k)}\right|^{-1}>\delta^{2} / 4
$$

Therefore $\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\right|^{-1} \leq 4\left|a_{11}^{(k)}\right|^{-1} \delta^{-2}$. It follows from Lemma 4 that

$$
\begin{aligned}
\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} x_{j-1}\right|^{-1}\left|a_{11}^{(k)}+\sum_{j=2}^{n+1} a_{1 j}^{(k)} y_{j-1}\right|^{-1} \mid a_{11}^{(k)} & +\left.\sum_{j=2}^{n+1} a_{1 j}^{(k)} z_{j-1}\right|^{-1} \\
& \leq 8\left|a_{11}^{(k)}\right|^{-1} \delta^{-2} d^{*}(y, z)^{-2} \\
& \leq 8\left|a_{11}^{(k)}\right|^{-1} \delta^{-4}
\end{aligned}
$$

Thus our theorem is completely proved.
Remark 5. It is known that if $m>2 n$, then the series $\sum_{g_{k} \in G}\left|a_{11}^{(k)}\right|^{-m}$ converges for a discrete subgroup G of $U(1, n ; C)$ (see [1, Theorem 5.2]).

Remark 6. In the case where G acts on $\partial B^{n} \times \partial B^{n} \times \cdots \times \partial B^{n}$ with more than three factors, similar results are proved by a slight modification of our proofs.

References

[1] S. Kamiya: Discrete subgroups of convergence or divergence type of $U(1, n ; C)$. Math J. Okayama Univ., 26, 179-191 (1984).
[2] -: Discrete subgroups of $U(1, n ; C)$ on the product space $\partial B^{n} \times \partial B^{n} \times \cdots \times \partial B^{n}$. Quart. J. Math. Oxford, (2) 41, 287-294 (1990).
[3] -: Discrete subgroups of convergence type of $(1, n ; C)$. Hiroshima Math. J., 21, 1-21 (1991).
[4] P. J. Nicholls: The ergodic theory of discrete groups. London Math. Soc., Lecture Note Series, vol. 143 (Cambridge Univ. Press 1989).

