31. Retractive Nil-extensions of Regular Semigroups. II

By Stojan BOGDANOVIĆ and Miroslav ĆIRIĆ Institute of Mathematics, Knez Mihailova 35, Beograd, Yugoslavia

(Communicated by Shokichi IYANAGA, M.J.A., June 9, 1992)

Abstract: This paper is the continuation of [6]. Here we consider in particular retractive nil-extensions of unions of groups.

By Theorem 1, some criterions for a semigroup to be a retractive nilextension of a union of groups are given. A characterization of retractive nil-extensions of semilattice of left and right groups (mixed property) is given by Theorem 2. For the related results see [2] and [5].

Throughout this paper, Z^+ will denote the set of all positive integers. A semigroup S is π -regular, if for every $\alpha \in S$ there exists $n \in Z^+$ such that $a^n \in a^n Sa^n$. Let us denote by Reg(S) (Gr(S), E(S)) the set of all regular (completely regular, idempotent) elements of a semigroup S. A semigroup S is Archimedean, if for all $a, b \in S$ there exists $n \in Z^+$ such that $a^n \in SbS$. A semigroup S is completely Archimedean, if S is Archimedean and has a primitive idempotent (or, equivalently, if it is a nil-extension of a completely simple semigroup [1]). If e is an idempotent of a semigroup S, then by G_e we denote the maximal subgroup of S with e as its identity and $T_e = \{a \in S \mid (\exists n \in Z^+)a^n \in G_e\}$. For undefined notions and notations we refer [1], [10] and [6].

Veronesi's theorem [11]. A semigroup S is a semilattice of completely Archimedean semigroups, if and only if S is π -regular and Reg(S) = Gr(S).

Munn's lemma [9]. Let a be an element of a semigroup S such that a^n lies in some subgroup G of S for some $n \in \mathbb{Z}^+$. If e is an identity of G, then $ea = ae \in G_e$ and $a^m \in G_e$ for all $m \in \mathbb{Z}^+$, $m \ge n$.

Lemma 1 [5]. Let S be a nil-extension of a union of groups K. Then every retraction φ of S onto K has the following representation:

$$\varphi(x) = xe$$
 if $x \in T_e$, $e \in E(S)$.

Theorem 1. The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a union of groups;

(ii) S is π -regular and for all x, a, $y \in S$ there exists $n \in \mathbb{Z}^+$ such that (1) $xa^ny \in x^2Sy^2$;

(iii) S is a subdirect product of a union of groups and a nil-semigroup. Proof. (i) \Rightarrow (ii). Let S be a retractive nil-extension of a union of

groups K, with the retraction φ of S onto K. Let $x, a, y \in S$. Then there exists $n \in \mathbb{Z}^+$ such that $a^n \in K$, so $xa^n y \in K$. Let $x^m \in G_{\epsilon}, y^k \in G_f, m, k \in \mathbb{Z}^+$,

Supported by Grant 0401A of RFNS through Math. Inst. SANU.

Retractive Nil-extensions of Regular Semigroups. II

e, $f \in E(S)$. By Lemma 1, it follows that $\varphi(x) = xe = xx^m u \in x^2S$, for some $u \in G_e$, and in a similar way we prove that $\varphi(y) \in Sy^2$. Thus $xa^n y = \varphi(xa^n y) = \varphi(x)a^n \varphi(y) \in x^2 SSy^2 \subseteq x^2Sy^2$,

since $xa^n y \in K$, so (1) holds. It is clear that S is π -regular.

(ii) \Rightarrow (i). Let S be π -regular and let (1) hold. Let $a \in Reg(S)$. Then a = axa for some $x \in S$, so

$$a = a(xa)^n xa$$
 for all $n \in Z^+$,
 $\in a^2 S(xa)^2$ by (1),
 $\subseteq a^2 S$.

In a similar way we can prove that $a \in Sa^2$. Hence, Reg(S) = Gr(S), so by Veronesi's theorem it follows that S is a semilattice Y of completely Archimedean semigroups $S_{\alpha}, \alpha \in Y$. Also, for every $\alpha \in Y, S_{\alpha}$ is a nilextension of a completely simple semigroup K_{α} . Let $x \in S, e \in E(S)$. By (1) if follows that

$$xe = xee^n e$$
 for all $n \in \mathbb{Z}^+$,
= $(xe)^2 u$ for some $u \in S$, by (1)

whence $xe = (xe)^{m+1}u^m$ for every $m \in \mathbb{Z}^+$. In a similar way we can prove that there exists $v \in S$ such that $ex = v^m (ex)^{m+1}$ for all $m \in \mathbb{Z}^+$. Assume that $xe \in S_a$ for some $a \in Y$. Then it is easy to verify that $xeu^m \in S_a$ for all $m \in \mathbb{Z}^+$. Let $m \in \mathbb{Z}^+$ be such that $(xe)^m \in K_a$. Then

$$xe = (xe)^{m}(xe)u^{m} \in K_{a}S_{a} \subseteq K_{a} \subseteq Reg(S).$$

Hence, $xe \in Reg(S)$. Similarly we can prove that $ex \in Reg(S)$. Therefore K = Reg(S) = Gr(S) is an ideal of S.

Assume that $xe \in x^m Se$, i.e. $xe = x^m ue$ for some $u \in S$. By (1) we obtain that there exists $n \in Z^+$ such that $x^m (ue)^n e \in x^{2m} Se$. Since K is a completely regular ideal of S, we have $ue \in K$ and $ue \mathcal{H}(ue)^n$, where \mathcal{H} is the Green's H-relation on K, so there exists $v \in S$ such that $ue = (ue)^n v$. Thus

 $xe = x^m ue = x^m uee = x^m (ue)^n ve = x^m (ue)^n eve \in x^{2m} Seve \subseteq x^{m+1}Se.$ Now by induction we obtain

(2) $xe \in x^m Se$, for every $m \in Z^+$.

Similarly we can prove that

No. 6]

(3) $ex \in eSx^m$, for every $m \in Z^+$.

Define a mapping $\varphi: S \to K$ by $\varphi(x) = xe$, if $x \in T_e$, $e \in E(S)$. Let $x, y \in S$. Then $x \in T_e$, $y \in T_f$, $xy \in T_g$ for some e, f, $g \in E(S)$, i.e. $x^n \in G_e$, $y^m \in G_f$, $(xy)^k \in G_g$ for some $n, m, k \in \mathbb{Z}^+$. By (2) and (3) we obtain $yg \in y^m Sg = fy^m Sg$, $xf \in x^n Sf = ex^n Sf$, $ey \in eSy^m = eSy^m f$, and $exy \in eS(xy)^k = eS(xy)^kg$, whence

yg = fyg, xf = exf, ey = eyf, exy = exyg. By this and by Munn's lemma it follows that

 $\varphi(xy) = xyg = xfyg = exfyg = exyg = exy = xey = xeyf = \varphi(x)\varphi(y).$

Therefore, φ is a retraction, so S is a retractive nil-extension of a union of groups.

(i) \Leftrightarrow (iii). This follows from Theorem 1 [6].

Corollary 1 [7]. The following conditions on a semigroup S are equi-

valent:

(i) S is an n-inflation of a union of groups;

(ii) for all $x, y \in S$, $xS^{n-1}y \subseteq x^2S^ny^2$ ($xy \in x^2Sy^2$, if n=1);

(iii) S is a subdirect product of a union of groups and an (n+1)-nilpotent semigroup.

Theorem 2. A semigroup S is a retractive nil-extension of a semilattice of left and right groups if and only if S is π -regular and for all $x, a, y \in S$ there exists $n \in \mathbb{Z}^+$ such that

Proof. Let S be a retractive nil-extension of a semigroup K and let K be a semilattice Y of left and right groups K_a , $\alpha \in Y$, with a retraction φ of S onto K. Let $x, a, y \in S$. Then there exists $n \in Z^+$ such that $a^n \in K$. As in the proof of Theorem 1, we obtain that $xa^ny \in x^2Sy^2$. On the other hand, since xa^ny , a^ny^2x , $yx^2a^n \in K$, we then have that xa^ny , a^ny^2x , $yx^2a^n \in K_a$ for some $\alpha \in Y$, so by Lemma 1.1 [8] it follows that

 $xa^ny \in xa^nyK_aa^ny^2x \subseteq x^2Sy^2Sy^2x \subseteq x^2Sy^2x,$

if K_{α} is a left group, or

 $xa^ny \in yx^2a^nK_axa^ny \subseteq yx^2Sx^2Sy^2 \subseteq yx^2Sy^2$,

if K_a is a right group. Therefore, (4) holds. It is clear that S is π -regular. Conversely, let S be π -regular and let (4) hold. Let $a, b \in S$. Then there exists $n \in Z^+$ such that

 $(ab)^{n+1} = a(ba)^n b \in a^2 Sb^2 a \cup ba^2 Sb^2 \subseteq Sa \cup bS,$

so by Theorem 3.1 [3] we obtain that S is a semilattice Y of semigroups S_{α} , $\alpha \in Y$, and for every $\alpha \in Y$, S_{α} is a nil-extension of a left or a right group K_{α} . Let $x \in S$, $e \in E(S)$. Then by (4) it follows that

 $xe = (xe)e^n e$ for every $n \in \mathbb{Z}^+$ $\in (xe)^2 Sexe \cup e(xe)^2 Se$ $\subseteq (xe)^2 S \cup e(xe)^2 Se.$

Let $xe \in e(xe)^2 S$. Then xe = exe, so $xe \in e(xe)^2 S = (xe)^2 S$. Therefore, $xe = (xe)^2 u$ for some $u \in S$, whence $xe = (xe)^{m+1}u^m$ for every $m \in Z^+$. Similarly we can show that there exists $v \in S$ such that $ex = v^m(ex)^{m+1}$ for every $m \in Z^+$. Now, as in the proof of Theorem 1 we can prove that K = Reg(S) = Gr(S) is an ideal of S. It is clear that K is a semilattice of left and right groups. Now we shall prove that

(5) $xe \in x^mSe$ for every $m \in Z^+$. First, assume that xe = exe. Then it is easy to verify that $(xe)^m = x^me$ for all $m \in Z^+$. Since $xe \in K$, $xe \mathcal{H}(xe)^m = x^me$, where \mathcal{H} is a Green's *H*-relation on *K*, so (5) holds. Assume that $xe \neq exe$ and assume that $xe = x^mue$ for some $u \in S$ and $m \in Z^+$. Then by (4) it follows that there exists $n \in Z^+$ such that $x^m(ue)^n e \in x^{2m}Sex^m \cup ex^{2m}Se$. Moreover, since $ue \in K$ and $ue\mathcal{H}(ue)^n$, there exists $v \in K$ such that $ue = (ue)^n v = (ue)^n ev$. Thus

 $xe = x^m ue = x^m (ue)^n eve \in x^{2m} Sex^m \cup ex^{2m} Se.$

Since $xe \neq exe$, $xe \in x^{2m}Sex^m$, so $xe \in x^{m+1}Se$. Whence by induction we obtain that (5) holds. Similarly we can show that

No. 6] Retractive Nil-extensions of Regular Semigroups. II

$$(6) ex \in eSx^m for every m \in Z^+,$$

and as in the proof of Theorem 1 we obtain that K is a retract of S.

Corollary 2. A semigroup S is an n-inflation of a semilattice of left and right groups if and only if $xS^{n-1}y \subseteq x^2S^ny^2x \cup yx^2S^ny^2$ ($xy \in x^2Sy^2x \cup yx^2Sy^2$, if n=1) for all $x, y \in S$.

Theorem 3. A semigroup S is a nil-extension of a semilattice of left groups if and only if S is π -regular and for all $x, a, y \in S$ there exists $n \in \mathbb{Z}^+$ such that

(7)

$$xa^ny \in xSx.$$

Proof. Let S be a nil-extension of a semigroup K which is a semilattice of left groups. Then S is a semilattice Y of completely Archimedean semigroups $S_{\alpha}, \alpha \in Y$. Let $K_{\alpha} = S_{\alpha} \cap K$, $\alpha \in Y$. Then it is clear that K_{α} is a left group for every $\alpha \in Y$. Let $x, a, y \in S$. Then there exists $n \in Z^+$ such that $a^n \in K$, so $xa^ny, ya^nx \in K_{\alpha}$ for some $\alpha \in Y$. Now by Lemma 1.1 [8] we obtain

 $xa^n y \in xa^n y K_{\alpha} ya^n x \subseteq xSx.$

Therefore, (7) holds. It is clear that S is π -regular.

Conversely, let S be π -regular and let (7) hold. Let $x \in S$, $e \in E(S)$. Then

> $xe = xee^n e$ for every $n \in \mathbb{Z}^+$, $\in xeSxe$ by (7),

so $xe \in Reg(S)$. By this it follows that Reg(S) is a left ideal of S. Moreover,

> $ex = ee^n x$ for every $n \in \mathbb{Z}^+$, $\in eSe$ by (7),

so ex = exe, whence

 $ex = exe^n e$ for every $n \in \mathbb{Z}^+$, $\in exSex$ by (7).

Therefore, $ex \in Reg(S)$, so Reg(S) is a right ideal of S. Therefore, S is a nil-extension of a regular semigroup K = Reg(S).

Let $a, b \in K$. Then there exists $e \in E(K)$ such that ae = a, whence

 $ab = ae^nb$ for every $n \in Z^+$, $\in aSa$ by (7), $\subset Ka$ since K is an ideal of S,

so by Theorem IV 3.10. [10] it follows that K is a semilattice of left groups.

Theorem 4. A semigroup S is a retractive nil-extension of a semilattice of left groups if and only if S is π -regular and for all $x, a, y \in S$ there exists $n \in \mathbb{Z}^+$ such that

(8)

 $xa^ny \in x^2Sx.$

Proof. Let S be a retractive nil-extension of a semilattice of left groups. Then it is clear that S is π -regular and in a similar way as in the proof of Theorem 2 we can show that (8) holds.

Conversely, let S be π -regular and let (8) hold. Then by Theorem 3 we see that S is a nil-extension of a semigroup K and that K is a semilat-

129

tice of left groups. Let $x \in S$, $e \in E(S)$. As in the proof of Theorem 1 we can show that $xe \in x^mS$ for every $m \in Z^+$. Moreover, by (8) it follows that ex = exe, so $(ex)^m = ex^m$ for every $m \in Z^+$, and since $ex \mathcal{H}(ex)^m = ex^m$ (where \mathcal{H} is a Green's *H*-relation on *K*), $ex \in Sx^m$ for every $m \in Z^+$. Now, as in the proof of Theorem 1 we see that the mapping $\varphi: S \to K$ defined by $\varphi(x) = xe$, if $x \in T_e$, $e \in E(S)$, is a retraction. Therefore, *S* is a retractive nil-extension of a semilattice of left groups.

Corollary 3. A semigroup S is an n-inflation of a semilattice of left groups if and only if $xS^{n-1}y \subseteq x^2S^nx$ ($xy \in x^2Sx$, if n=1) for all $x, y \in S$.

Theorem 5. (i) A semigroup S is a retractive nil-extension of a completely simple semigroup if and only if S is π -regular, Archimedean and for all $a, b \in S$ there exists $n \in \mathbb{Z}^+$ such that $(ab)^n \in a^2Sb^2$.

(ii) A semigroup S is a retractive nil-extension of a left group if and only if S is π -regular, Archimedean and for all $a, b \in S$ there exists $n \in \mathbb{Z}^+$ such that $(ab)^n \in a^2Sa$.

Proof. (i) Let S be a retractive nil-extension of a completely simple semigroup K and let φ be a retraction of S onto K. As in the proof of Theorem 1 we can prove that $\varphi(x) \in x^2 S \cap Sx^2$ for all $x \in S$, and since for all $a, b \in S$ there exists $n \in \mathbb{Z}^+$ such that $(ab)^n \in K$, we then have

 $(ab)^n = \varphi((ab)^n) = (\varphi(a)\varphi(b))^n \in a^2Sb^2.$

The converse follows from Theorem 1 [4].

(ii) We can prove this similarly as (i).

References

- S. Bogdanović: Semigroups with a system of subsemigroups. Inst. of Math. Novi Sad (1985).
- [2] —: Nil-extensions of a completely regular semigroup. Proc. of the conf. "Algebra and Logic", Sarajevo 1987. Univ. of Novi Sad, pp. 7-15 (1989).
- [3] S. Bogdanović and M. Cirić: Semigroups of Galbiati-Veronesi. III (Semilattices of nil-extentions of left and right groups). Facta Universitatis (Niš), ser. Math. Inform., 4, 1-14 (1989).
- [4] ----: Semigroups of Galbiati-Veronesi. IV. ibid. (to appear).
- [5] —: A nil-extension of a regular semigroup. Glasnik Matematički, vol. 25 (2), pp. 3-23 (1991).
- [6] —: Retractive nil-extensions of regular semigroups. I. Proc. Japan. Acad., 68A, 115-117 (1992).
- [7] S. Bogdanović and S. Milić: Inflations of semigroups. Publ. Inst. Math., 41 (55), 63-73, (1987).
- [8] S. Bogdanović and B. Stamenković: Semigroups in which S^{n+1} is a semilattice of right groups (Inflations of a semilattice of right groups). Note di Matematica, **8**, 155-172 (1988).
- [9] W. D. Munn: Pseudoinverses in semigroups. Proc. Camb. Phil. Soc., 57, 247-250 (1961).
- [10] M. Petrich: Introduction to Semigroups. Merill, Ohio (1973).
- [11] M. L. Veronesi: Sui semigruppi quasi fortemente regolari. Riv. Mat. Univ. Parma, (4) 10, 319-329 (1984).