30. Closed Regular Curves and the Fundamental Form on the Projective Spaces

By Kōjun Abe
Department of Mathematics, Faculty of Liberal Arts, Shinshu University
(Communicated by Heisuke Hironaka, m. J. a., June 9, 1992)

o. Introduction. In the previous paper [1] we consider the equivalence classes of closed regular curves in a Riemannian manifold M. The classification is reduced to the problem to solve infinite series of ordinary differential equations whose coefficients are given by curvature tensors of M. The purpose of this paper is to investigate the geometric property of the curvature tensors when the manifold M is either the m-dimensional complex projective space $C P_{m}$, the m-dimensional quaternionic projective space $H P_{m}$ or the Cayley projective plane $\mathfrak{C} P_{2}$.

In §1 we shall show that the above curvature tensors are written by a local 4 -field whose antisymmetrization 4 -form Ω_{4} is related to the fundamental form on the projective space. Precisely we have the following. For the case $M=C P_{m}$ and $H P_{m}$, the local 4 -form Ω_{4} defines an invariant 4-form on M. Moreover, if $M=C P_{m}$, we get $\Omega_{4}=\Omega_{2} \wedge \Omega_{2}$, where Ω_{2} is the fundamental form on $C P_{m}$. And if $M=H P_{m}$, the 4 -form is coincide with the fundamental form on $H P_{m}$ defined by Krains [7]. For the case $M=\Subset P_{2}$ we can prove that a local 8 -form $\int_{\operatorname{spin}(9)} \Omega_{4} \wedge \Omega_{4}$ gives a fundamental form on $\mathbb{C} P_{2}$.
 generator of the integral cohomology ring of $\mathfrak{C} P_{2}$. For the cases $M=C P_{m}$ and $H P_{m}$, the generator has been determined from the fundamental form, in Besse [4], Chapter 3. The fundamental 8-form on $\mathfrak{S}^{5} P_{2}$ has been obtained by Brown and Gray [5] and Berger [3]. In Besse [4] p. 93, it is asked whether the 8 -form furnishes the generator. However it is not easy to do because the 8 -form is defined by using integration. We shall find a definitive fundamental 8 -form on ${ }^{5} P_{2}$ by the principle of triality, which leads to calculating the generator of the integral cohomology ring.

1. Closed regular curves in the projective spaces. Let M be a projective space $C P_{m}, H P_{m}$ or $\mathscr{S}_{2} P_{2}$. Let $C=\{c(t)\}$ be a closed regular curve in M parameterized by arc length. In [1] we define the equivalence class of C by using a flow on a δ-tubular neighborhood $U_{\hat{\delta}}$ of C in M. The equation $\psi(t, s)$ of the flow is written as $\psi(t, s)=\exp _{c(t)} s Y(t, s)(-\infty<t<\infty,-\delta<s$ $<\delta)$, where $Y(t, s)$ is a unit normal vector of C at $c(t)$.

Let G be the isometry group of M and $\{\hat{c}(t)\}$ be a horizontal lift of $\{c(t)\}$ with $\hat{c}(0)=1$. Put $w(t)=\left(d L_{\hat{c}(t)-1}\right)_{\hat{c}(t)} \hat{c}^{\prime}(t)$ and $Z(t, s)=\left(d L_{\hat{c}(t)-1}\right)_{\hat{c}(t)} Y(t, s)$.

Then the equivalence class of C is determined by $Z(t, s)$. We define a 4-field on M as follows. If $M=C P_{m}$, then $\Omega=\Omega_{2} \cdot \Omega_{2}$, where Ω_{2} is the fundamental form on $C P_{m}$. If $M=H P_{m}$, then $\Omega=\Omega_{I} \cdot \Omega_{I}+\Omega_{J} \cdot \Omega_{J}+\Omega_{K} \cdot \Omega_{K}$, where Ω_{I}, Ω_{J} and Ω_{K} are 2 -forms on the tangent space $T_{c(0)}(M)$ defined by Krains [7], §1. We see that the antisymmetrization 4 -form of Ω defines a fundamental 4-form on $H P_{m}$ (cf. [4], Chapter 3). For the case of $M=\mathfrak{C} P_{2}$, it is defined by using the associator of the Cayley division algebra ${ }^{5}$ (see [2] for details). We can identify ${ }^{〔} P_{2}$ with the symmetric space $F_{4} / \operatorname{Spin}(9)$. The antisymmetrization 4 -form Ω_{4} is not $\operatorname{Spin}(9)$-invariant. But an 8 -form $\int_{\operatorname{Spin}(9)} \Omega_{4} \wedge \Omega_{4}$ defines a fundamental 8-form on $\mathfrak{C} P_{2}$. Let $\left\{e_{i}\right\}$ be a basis of $T_{c(0)}(M)$. From [1], Theorem 3.1 we have the following

Theorem 1.

$$
(-\cos 2 s+\cos s) \sum_{i} \Omega\left(Z(t, s), w(t), Z(t, s), e_{i}\right) e_{i}
$$

$$
+\left(-\frac{1}{2} \sin 2 s+\sin s\right) \sum_{i}\left(\Omega\left(Z(t, s), \frac{\partial Z(t, s)}{\partial t}, Z(t, s), e_{i}\right)\right.
$$

$$
\left.+\Omega\left(Z(t, s), w(t), Z(t, s), e_{i}\right)\right) e_{i}+(\sin s) \frac{\partial Z(t, s)}{\partial t}+(\cos s) w(t)
$$

$$
=\varepsilon(t, s) w(t)
$$

Here the summation is taken over $1 \leq i \leq \operatorname{dim} M$ and $\varepsilon(t, s)$ is a real valued function.
2. Generator of the integral cohomology ring of $\mathfrak{c} P_{2}$. In this section we shall determine a generator of the integral cohomology ring of ${ }^{\mathfrak{c}} P_{2}$. Let T_{0} be a tangent space $T_{0}\left(\mathfrak{c} P_{2}\right)$. Then we can consider T_{0} as the ordered pairs (a, b) of Cayley numbers a, b. Let $e_{0}=1, e_{1}, \cdots, e_{7}$ be a basis of \mathfrak{C} as Yokota [8]. Let $v_{i}, w_{i}, i=0, \cdots, 7$, be 1 -forms on T_{0} satisfying $v_{i}\left(e_{j}, 0\right)=\delta_{i j}, v_{i}\left(0, e_{j}\right)=0, w_{i}\left(e_{j}, 0\right)=0, w_{i}\left(0, e_{j}\right)=\delta_{i, j}$ for $j=0, \cdots, 7$. We define a matrix R as follows.

$$
R=\left(\begin{array}{llllllll}
0 & 1 & 3 & 2 & 5 & 4 & 7 & 6 \\
0 & 2 & 1 & 3 & 4 & 6 & 7 & 5 \\
0 & 3 & 2 & 1 & 7 & 4 & 6 & 5 \\
0 & 4 & 1 & 5 & 6 & 2 & 3 & 7 \\
0 & 5 & 4 & 1 & 2 & 7 & 3 & 6 \\
0 & 6 & 1 & 7 & 2 & 4 & 5 & 3 \\
0 & 7 & 6 & 1 & 5 & 2 & 4 & 3
\end{array}\right) .
$$

Let $J_{k}(k=2,3,4)$ be the family of subsets of distinct k elements $\left(j_{1}, \cdots, j_{k}\right)$ of the set $\{1,2,3,4\}$. Let $R_{i, j}$ denote the (i, j) element of the $\operatorname{matrix} R$. For $1 \leq i \leq 7,1 \leq j \leq 4$, put

$$
\omega_{i j}=v_{R_{i, 2 j-1}} \wedge v_{R_{i, 2 j}}, \quad \eta_{i j}=w_{R_{i, 2 j-1}} \wedge w_{R_{i, 2 j}}(j \neq 1), \eta_{i 1}=w_{i} \wedge w_{0} .
$$

We define 8 -forms $\Omega_{8}^{k}(k=1, \cdots, 8)$ on T_{0} as follows.

$$
\begin{aligned}
& \Omega_{8}^{1}=-14\left(v_{0} \wedge \cdots \wedge v_{7}-w_{0} \wedge \cdots \wedge w_{7}\right) . \\
& \Omega_{8}^{2}=-2 \sum\left(\omega_{i j_{1}} \wedge \omega_{i j_{2}} \wedge \omega_{i j_{3}} \wedge \eta_{i j_{4}}+\eta_{i j_{1}} \wedge \eta_{i j_{2}} \wedge \eta_{i j_{3}} \wedge \omega_{i j_{4}}\right),
\end{aligned}
$$

where the summation is taken over $1 \leq i \leq 7,\left(j_{1}, j_{2}, j_{3}, j_{4}\right) \in J_{4}$ with $j_{1}<j_{2}<j_{3}$.

$$
\Omega_{8}^{3}=-2 \sum(-1)^{\varepsilon}\left(\omega_{i j_{1}} \wedge \omega_{i j_{9}} \wedge \omega_{i j_{3}} \wedge \eta_{i j_{1}}+\eta_{i j_{1}} \wedge \eta_{i j_{2}} \wedge \eta_{i j_{3}} \wedge \omega_{i j_{1}}\right),
$$

where the summation is taken over $1 \leq i \leq 7,\left(j_{1}, j_{2}, j_{3}\right) \in J_{3}$ with $j_{2}<j_{3}$ and $\varepsilon=1$ if $j_{2}=1$ and $\varepsilon=0$ if $j_{2}>1$.

$$
\Omega_{8}^{4}=-2 \sum \omega_{i j_{1}} \wedge \omega_{i j_{2}} \wedge \eta_{i j_{3}} \wedge \eta_{i j_{4}},
$$

where the summation is taken over $1 \leq i \leq 7,\left(j_{1}, j_{2}, j_{3}, j_{4}\right) \in J_{4}$ with $j_{1}<j_{2}$ and $j_{3}<j_{4}$.

$$
\Omega_{8}^{5}=2 \sum \omega_{i j_{1}} \wedge \eta_{i j_{1}} \wedge \omega_{i j_{2}} \wedge \eta_{i j_{2}},
$$

where the summation is taken over $1 \leq i \leq 7,\left(j_{1}, j_{2}\right) \in J_{2}$ with $j_{1}<j_{2}$.

$$
\Omega_{8}^{6}=-\sum \omega_{i_{1} j_{1}} \wedge \eta_{i_{1} j_{2}} \wedge \omega_{i_{2} j_{3}} \wedge \eta_{i_{2} j_{4}},
$$

where the summation is taken over $1 \leq i_{1}<i_{2} \leq 7,\left(j_{1}, j_{2}, j_{3}, j_{4}\right) \in J_{4}$.

$$
\Omega_{8}^{7}=\sum \omega_{i_{1} j_{1}} \wedge \eta_{i_{1} j_{1}} \wedge \omega_{i_{2} j_{2}} \wedge \eta_{i_{2} j_{2}},
$$

where the summation is taken over $1 \leq i_{1}<i_{2} \leq 7,\left(j_{1}, j_{2}\right) \in J_{2}$.

$$
\Omega_{8}^{8}=-\sum(-1)^{\varepsilon} \omega_{i_{1} j_{1}} \wedge \eta_{i_{1 j_{1}}} \wedge \omega_{i_{2} j_{2}} \wedge \eta_{i_{2} j_{3}},
$$

where the summation is taken over $1 \leq i_{1}, i_{2} \leq 7,\left(j_{1}, j_{2}, j_{3}\right) \in J_{3}$ and $\varepsilon=1$ if $j_{2}=1$ or $j_{3}=1$, otherwise $\varepsilon=0$.

Now we put $\Omega_{8}=\sum_{i=1}^{8} \Omega_{8}^{i}$. Using the principle of triality (see Freudenthal [6]), we have the following

Theorem 2. Ω_{8} is $\operatorname{Spin}(9)$ invariant.
By Theorem $2, \Omega_{8}$ defines an invariant 8 -form on $\complement^{5} P_{2}$. It can be shown that $\Omega_{8} \wedge \Omega_{8}=1848 \cdot\left(\right.$ volume form of $\left.\mathfrak{c} P_{2}\right)$. Since the volume of $\mathfrak{S}_{2} P_{2}$ is $8 \pi^{8} / 11$!, we have

Theorem 3. $30 \sqrt{3} / \pi^{4} \Omega_{8}$ gives a generator of integral cohomology ring of $\mathfrak{c} P_{2}$.

References

[1] K. Abe: On closed regular curves in Riemannian manifolds. Nihonkai Math. Jour., 2, 47-61 (1991).
[2] -: On closed regular curves in projective spaces (in preparation).
[3] M. Berger: Du côté de chez Pu. Ann. Scient. Éc. Norm. Sup., 5, 1-44 (1972).
[4] A.L. Besse: Manifolds All of Whose Geodesics Are Closed. Springer-Verlag, Berlin, Heidelberg, New York (1978).
[5] R. Brown and A. Gray: Riemannian manifolds with holonomy group Spin(9). Diff. Geometry in honor of K. Yano. Kinokuniya, Tokyo, 41-59 (1972).
[6] H. Freudenthal: Oktaven, Ausnahmengruppen und Oktavengeometrie. Utrecht (1951).
[7] V. Kraines: Topology of quaternionic manifolds. Trans. Amer. Math. Soc., 122, 357-367 (1966).
[8] I. Yokota: Exceptional Lie group F_{4} and its representation ring. Jour. Fac. Sci. Shinshu Univ., 3, 35-60 (1968).

