3. On the Inseparable Degree of the Gauss Map of Higher Order for Space Curves

By Masaaki Homma*) and Hajime KajI**)
(Communicated by Heisuke Hironaka, m. J. a., Jan. 13, 1992)

Abstract

Let X be a curve non-degenerate in a projective space \boldsymbol{P}^{N} defined over an algebraically closed field of positive characteristic p, consider the Gauss map of order m defined by the osculating m-planes at general points of X, and denote by $\{b\}_{0 \leq j \leq N}$ the orders of X. We prove that the inseparable degree of the Gauss map of order m is equal to the highest power of p dividing b_{m+1}.

Key words: Space curve, Gauss map, inseparable degree.
0. Introduction. Let X be an irreducible curve in a projective space \boldsymbol{P}^{N} defined over an algebraically closed field k of positive characteristic p, C the normalization of X, and $\iota: C \rightarrow \boldsymbol{P}^{N}$ the natural morphism. Denote by $\iota^{(m)}: C \rightarrow \boldsymbol{G}\left(\boldsymbol{P}^{N}, m\right)$ the Gauss map of order m defined by the osculating m planes of X, where $\boldsymbol{G}\left(\boldsymbol{P}^{N}, m\right)$ is a Grassmann manifold of m-planes in \boldsymbol{P}^{N}. Assume that X is non-degenerate in \boldsymbol{P}^{N}, and let $\left\{b_{j}\right\}_{0 \leq j \leq N}$ be the orders of ι. The purpose of this short note is to prove

Theorem. The inseparable degree of $\iota^{(m)}$ is the highest power of p dividing b_{m+1}.

In case of $m=1$, Theorem is known : For $N=2$, see [4, Proposition 4.4]; for a general N, see [5, Remark below Corollary 2.3], [3, Proposition 4]. A corollary to this result will give a generalization of [5, Theorem 2.1] (see Corollary below).

In case of $m=N-1$, Theorem coincides with a result of A. Hefez and N. Kakuta, announced in [1]. Although it has not been published yet, according to Hefez [2], their proof for the theorem is similar in spirit to ours (precisely speaking, of the first version), but not identical. Hefez and Kakuta moreover found

Theorem (Hefez-Kakuta). Denote by $C^{(n)} X$ the conormal variety of order m, and by $X^{*(m)}$ the m-dual. Then the inseparable degree of the natural morphism $C^{(m)} X \rightarrow X^{*(n)}$ is equal to the highest power of p dividing b_{m+1}.

This result is stated as a theorem in [2] without proof.
We finally mention that this Theorem of Hefez and Kakuta is deduced also from our theorem and a result in [6] that $C^{(m)} X \rightarrow X^{*(m)}$ has the same inseparable degree as $\iota^{(m)}$, which is proved directly without going through

[^0]the orders.

1. Notations and terminology. Denote by V the image of the natural map $\iota^{*}: H^{0}\left(\boldsymbol{P}^{N}, \mathcal{O}_{P^{N}}(1)\right) \rightarrow H^{0}\left(C, \iota^{*} \mathcal{O}_{P^{N}}(1)\right)$. For a general point P in C, choose a trivialization $\iota^{*} \mathcal{O}_{P N}(1)_{P} \simeq \mathcal{O}_{C, P}$, and consider V as a subset of the rational function field $K(C)$. Then, taking a suitable basis $\left\{x_{0}, \cdots, x_{N}\right\}$ for V, one can expand x_{i} as follows:

$$
\begin{equation*}
x_{i}=\sum_{n \geq b_{i}} a_{i, n} t^{n} \tag{*}
\end{equation*}
$$

in $\hat{\mathcal{O}}_{c, P} \simeq k \llbracket t \rrbracket$ with $a_{i, b_{i}} \neq 0$, for some non-negative integers $b_{0}<b_{1}<\cdots<b_{N}$, where t is a local parameter of C at P. The orders of ι are defined to be $\left\{b_{j}\right\}_{0 \leq 1 \leq N}$ and the osculating m-plane of ι at P, denoted by $T_{P}^{(m)}$, is a linear space determined by $X_{m+1}=\cdots=X_{N}=0$, where ($X_{0}: \cdots: X_{N}$) is a homogeneous coordinate of \boldsymbol{P}^{N} corresponding to the basis $\left\{x_{i}\right\}_{0 \leq i \leq N}$. The Gauss map of order m of ι, denoted by $\iota^{(m)}$, is defined as the elimination of the base locus of the rational map $C \rightarrow \boldsymbol{G}\left(\boldsymbol{P}^{N}, m\right)$, sending P to $T_{P}^{(m)}$ for general points P of C, which is locally given by a matrix, $\left(D_{t}^{\left(b_{j}\right)} x_{i}\right)_{0 \leq i \leq N, 0 \leq j \leq m}$, where $D_{t}^{(k)}$ is the Hasse differential operator of order k with respect to the parameter t.

For full details of the above, we refer to [7, §§4, 5], [9, §1].
2. Proof of Theorem. Let q be the highest power of p dividing b_{m+1}, and denote by c the quotient:

$$
b_{m+1}=c q
$$

Since $(c-1) q$ is non-negative and p-adically less than b_{m+1}, according to [8, Satz 6], it is an order of ι, say b_{k}, with $0 \leq k \leq m$.

Lemma. (a) $D_{t}^{\left(b_{j}\right)} x_{i}$ is a unit if $j=i$, and is not if $j<i$.
(b) $D_{t}^{\left(b_{j}\right)} x_{i}$ is of order at least q if $j \leq m<i$.
(c) $D_{t}^{\left(b_{k}\right)} x_{m+1}$ is of order exactly q.

Proof. We first note that

$$
\begin{equation*}
D_{t}^{\left(b_{j}\right)} x_{i}=\sum_{n \geq b_{i}} a_{i, n}\binom{n}{b_{j}} t^{n-b_{j}} \tag{*}
\end{equation*}
$$

for arbitrary i, j. Thus, (a) follows from this (*).
For (b), suppose the contrary : According to (*), there would exist an integer $n \geq b_{i}$ such that
(***)

$$
\begin{gather*}
\binom{n}{b_{j}} \not \equiv 0 \quad \bmod p, \quad \text { and } \tag{**}\\
n-b_{j}<q .
\end{gather*}
$$

Dividing by q, writing n and b_{j} as $n=n^{\prime} q+n^{\prime \prime}, b_{j}=b^{\prime} q+b^{\prime \prime}$ with $0 \leq n^{\prime \prime}$, $b^{\prime \prime}<q$, we have

$$
\binom{n}{b_{j}}=\binom{n^{\prime} q+n^{\prime \prime}}{b^{\prime} q+b^{\prime \prime}} \equiv\binom{n^{\prime}}{b^{\prime}}\binom{n^{\prime \prime}}{b^{\prime \prime}} \quad \bmod p .
$$

In particular, $n^{\prime \prime} \geq b^{\prime \prime}$ because of ($* *$). On the other hand, $n^{\prime} \geq c>b^{\prime}$ since $n \geq b_{i} \geq b_{m+1}>b_{j}$ and $b_{m+1}=c q$. Therefore, it follows

$$
n-b_{j}=\left(n^{\prime}-b^{\prime}\right) q+\left(n^{\prime \prime}-b^{\prime \prime}\right) \geq q
$$

which contradicts to $(* * *)$.

Finally for (c), the first term of the summation in (*) for $D_{t}^{\left(b_{k}\right)} x_{m+1}$ is

$$
\binom{b_{m+1}}{b_{k}} t^{b_{m+1}-b_{k}}
$$

and this is not zero: In fact, we have $\binom{b_{m+1}}{b_{k}} \equiv\binom{c}{c-1}=c \not \equiv 0 \bmod \mathrm{p}$; because $b_{m+1}=c q, b_{k}=(c-1) q$, and c is coprime to p. This proves (c) since $b_{m+1}-b_{k}$ $=q$.

Now we prove Theorem. Let $\Delta_{i_{0}, \ldots, i_{m}}$ be the submatrix of $\left(D_{t}^{\left(b_{j}\right)} x_{i}\right)_{0 \leq i \leq N}$, ${ }_{0 \leq j \leq m}$, consisting of the rows i_{0}, \cdots, i_{m}, where we start with zero to count those rows. Since the rational map sending P to $T_{P}^{(m)}$ is determined by the minors,

$$
\left(\operatorname{det} \Delta_{i_{0}, \cdots, i_{m}}\right)_{0 \leq i_{0}<\cdots<i_{m} \leq N}
$$

via the Plücker embedding of $\boldsymbol{G}\left(\boldsymbol{P}^{N}, m\right)$, it suffices to show :
(1) $\operatorname{det} \Delta_{0, \ldots, m}$ is a unit;
(2) $\operatorname{det} \Delta_{i_{0}, \cdots, i_{m}}$ is of order at least q unless $\left(i_{0}, \cdots, i_{m}\right)=(0, \cdots, m)$;
(3) $\operatorname{det} \Delta_{0,1, \ldots, k-1, k+1, \ldots, m+1}$ is of order exactly q.

Proof. (1) It follows from Lemma (a) that $\Delta_{0, \ldots, m} \bmod t$ is lower triangular and each entry on the diagonal is a unit. So det $\Delta_{0, \ldots, m}$ is also a unit as required.
(2) If $\left(i_{0}, \cdots, i_{m}\right) \neq(0, \cdots, m)$, then $i_{m}>m$. It follows from Lemma (b) that each entry in the last row $\Delta_{i_{0}, \ldots, i_{m}}$ has order at least q, which implies (2).
(3) Consider the matrix

$$
\Delta_{0}, \cdots, k-1, m+1, k+1, \cdots, m
$$

instead of $\Delta_{0, \ldots, k-1, k+1, \ldots, m+1}$. Ignoring the k-th row, by the similar way to (1) we see that this is equal to a lower triangular matrix $\bmod t$ and the entries on the diagonal are all units. For the k-th row, according to (b) and (c) in Lemma, every entry has order at least q and the one on the diagonal has order exactly q. We thus conclude that its determinant is of order exactly q, and this completes the proof of (3).

We have thus proved Theorem.
Corollary (Generic Projection). The inseparable degree of $\iota^{(m)}$ is invariant under a projection of \boldsymbol{P}^{N} from a generic point, where $1 \leq m \leq N$ -2.

Proof. Since the order b_{m+1} is invariant under a generic projection, the result thus follows from Theorem.

Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 02804002), The Ministry of Education, Science and Culture, Japan. The second author was partially supported by Grant-in-Aid for Encouragement of Young Scientists (No. 02740053), The Ministry of Education, Science and Culture, Japan.

Addendum. After the draft was written up, we received a preprint "On the geometry of non-classical curves" by A. Hefez and N. Kakuta, which relates to the work mentioned in Introduction.

References

[1] A. Garcia and J. F. Voloch: Duality for projective curves (preprint).
[2] A. Hefez: Letter to M. Homma dated 19 September 1990.
[3] A. Hefez and J. F. Voloch: Frobenius non classical curves. Arch. Math., Basel, 54, 263-273 (1990).
[4] M. Homma: Funny plane curves in characteristic $p>0$. Comm. Algebra, 15, 1469-1501 (1987).
[5] H. Kaji: On the Gauss maps of space curves in characteristic p. Compositio Math., 70, 177-197 (1989).
[6] -: On the inseparable degrees of the Gauss maps and the projection of the conormal variety to the dual of higher order for space curves. Math. Ann. (to appear).
[7] D. Laksov: Wronskians and Plücker formulas for linear systems on curves. Ann. Sci. École Norm. Sup., (4) 17, 45-66 (1984).
[8] F. K. Schmidt: Die Wronskische Determinante in Beliebigen differenzierbaren Funktionenkörpern. Math. Z., 45, 62-74 (1939).
[9] K. O. Stöhr and J. F. Voloch: Weierstrass points and curves over finite fields. Proc. London Math. Soc., (3) 52, 1-19 (1986).

[^0]: *) Department of Mathematics, Faculty of Education, Yamaguchi University.
 **) Department of Mathematics, Yokohama City University.

