10. Domains of Square Roots of Regularly Accretive Operators

By Yôichi Miyazaki
School of Dentistry, Nihon University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1991)

1. Introduction. The purpose of this paper is to give a sufficient condition for the domain of the square root of a regularly accretive operator and that of its adjoint operator to be the same.

Let X and V be two Hilbert spaces with $V \subset X$. Let the inclusion from V into X be continuous, and let V be dense in X. We denote by (f, g) (resp. $(u, v)_{V}$) the inner product in X (resp. V) and put $\|f\|=(f, f)^{1 / 2}$ and $\|u\|_{V}=(u, u)_{V}^{1 / 2}$.

Let $a[u, v]$ be a bounded sesquilinear form on $V \times V$;

$$
\begin{equation*}
|a[u, v]| \leqq M\|u\|_{V}\|v\|_{V}, \quad M>0, \text { for any } u, v \in V \tag{1.1}
\end{equation*}
$$

We suppose that $a[u, v]$ is strongly coercive;

$$
\begin{equation*}
\operatorname{Re} a[u, u] \geqq \delta\|u\|_{V}^{2}, \quad \delta>0, \text { for any } u \in V \tag{1.2}
\end{equation*}
$$

Let A be the closed operator associated with the variational triple $\{V, X, a\}$, that is, $u \in V$ belongs to $D(A)$ (the domain of A) if and only if there exists $f \in X$ such that $a[u, v]=(f, v)$ for any $v \in V$, and we define $A u=f$. We call A a regularly accretive operator.

We define the adjoint form $a^{*}[u, v]$ by $a^{*}[u, v]=\overline{a[v, u]}$ for any $u, v \in V$. It is known that the closed operator associated with the variational triple $\left\{V, X, a^{*}\right\}$ is the adjoint operator A^{*} of A.

As is well known, we can construct the fractional power $A^{\theta}(0 \leqq \theta \leqq 1)$ of the regularly accretive operator A. Kato [3] showed that $D\left(A^{\theta}\right)=$ $D\left(A^{* \theta}\right) \subset V$ if $0 \leqq \theta<1 / 2$. But generally $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)$ does not hold, for Mcintosh [7] gave a counterexample. On the other hand, Kato and Lions obtained the following results independently.

Theorem A (Kato [4], Lions [6]). Each of the following condition is sufficient for $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)=V$.
(i) Both $D\left(A^{1 / 2}\right)$ and $D\left(A^{* 1 / 2}\right)$ are oversets (or subsets) of V.
(ii) $D\left(A^{\theta}\right)=D\left(A^{* \theta}\right)$ for $\theta=1 / 2$ or 1 .
(iii) There exists a Hilbert space W which satisfies (1) $W \subset X$, (2) V is a closed subspace of $[X, W]_{1 / 2}$, (3) $D(A) \subset W$ and $D\left(A^{*}\right) \subset W$, where $[X, W]_{\theta}$ $(0 \leqq \theta \leqq 1)$ denotes the complex interpolation space of X and W.

Remark 1. Theorem A-(iii) is due only to Lions.
Remark 2. We may replace Theorem A-(ii) with $D\left(A^{\theta}\right)=D\left(A^{* \theta}\right)$ for some θ with $1 / 2 \leqq \theta \leqq 1$, because we have $\left[X, D\left(A^{\theta}\right)\right]_{1 /(2 \theta)}=D\left(A^{1 / 2}\right)$.

In the next section we give another sufficient condition for $D\left(A^{1 / 2}\right)=$ $D\left(A^{* 1 / 2}\right)=V$.
2. Main result. The sesquilinear form $a[u, v]$ can be written

$$
a=a_{R}+i a_{I}, \quad a_{R}=\frac{1}{2}\left(a+a^{*}\right), \quad a_{I}=\frac{1}{2 i}\left(a-a^{*}\right),
$$

where a_{R} and a_{I} are symmetric forms.
Let Λ be the associated operator with $\left\{V, X, a_{R}\right\}$. Then it is known that Λ is a positive self-adjoint operator satisfying $D\left(\Lambda^{1 / 2}\right)=V$ (with the equivalent norm) and $\alpha_{R}[u, u]=\left\|\Lambda^{1 / 2} u\right\|^{2}$ for $u \in V$. We note that

$$
\left|a_{I}[u, v]\right| \leqq \frac{M}{\delta}\left\|\Lambda^{1 / 2} u\right\|\left\|\Lambda^{1 / 2} v\right\|, \quad u, v \in V
$$

holds from (1.1) and (1.2). In order to obtain a sufficient condition for $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)=V$ we need a stronger estimate for a_{I} as follows.

Theorem 1. Let $0<\theta \leqq 1$. Suppose that
(2.1) $\quad\left|a_{I}[u, v]\right| \leqq M_{1}\left\|\Lambda^{\theta / 2} u\right\|\left\|\Lambda^{\theta / 2} v\right\|, \quad M_{1}>0$, for any $u, v \in V$.

Then we have for any σ with $0<\sigma<1-\theta / 2$,
(2.2) $\quad D\left(\Lambda^{\sigma}\right) \subset D\left(A^{\sigma}\right)$,
(2.3) $\quad\left\|A^{\sigma} u-\Lambda^{\sigma} u\right\| \leqq C\left\|\Lambda^{\sigma-(1-\theta) / 2} u\right\|, \quad C>0$, for any $u \in D\left(\Lambda^{\sigma}\right)$. If we replace A with A^{*}, (2.2) and (2.3) remain valid.

Proof. Our proof is a slight modification of Kato [3] who proved Theorem 1 when $\theta=1$.

There exists a bounded symmetric operator in X such that

$$
\begin{equation*}
(B u, v)=a_{I}\left[\Lambda^{-1 / 2} u, \Lambda^{-1 / 2} v\right], \quad u, v \in X \tag{2.4}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& A=\Lambda^{1 / 2}(1+i B) \Lambda^{1 / 2} \tag{2.5}\\
& (A+\lambda)^{-1}=(\Lambda+\lambda)^{-1}+\frac{\Lambda^{1 / 2}}{\Lambda+\lambda} B D_{\lambda} \frac{\Lambda^{1 / 2}}{\Lambda+\lambda}, \quad \lambda>0 \tag{2.6}
\end{align*}
$$

where D_{λ} is a bounded operator in X with $\left\|D_{\lambda}\right\| \leqq 1+\|B\|$. The proof of (2.4)-(2.6) is found in Kato [3].

Let $0<\sigma<1-\theta / 2$. Now we shall show that for $u \in D\left(\Lambda^{\sigma}\right)$,

$$
\begin{equation*}
w=\lim _{R \rightarrow \infty} \int_{0}^{R} \lambda^{\sigma}\left\{(A+\lambda)^{-1}-(\Lambda+\lambda)^{-1}\right\} u d \lambda \tag{2.7}
\end{equation*}
$$

exists and that

$$
\begin{equation*}
\|w\| \leqq C\left\|\Lambda^{\sigma-(1-\theta) / 2} u\right\|, \quad C>0 \tag{2.8}
\end{equation*}
$$

Here and in the sequel we denote by C positive constants independent of u, v, λ, t, a and b which may differ from each other. From (2.1), (2.4) and (2.6) we have for any $v \in X$,

$$
\begin{align*}
\left|\left(\left\{(A+\lambda)^{-1}-(\Lambda+\lambda)^{-1}\right\} u, v\right)\right| & \leqq\left|a_{I}\left[\Lambda^{-1 / 2} D_{\lambda} \frac{\Lambda^{1 / 2}}{\Lambda+\lambda} u, \frac{1}{\Lambda+\lambda} v\right]\right| \tag{2.9}\\
& \leqq C\left\|\frac{\Lambda^{1 / 2}}{\Lambda+\lambda} u\right\|\left\|\frac{\Lambda^{\theta / 2}}{\Lambda+\lambda} v\right\|
\end{align*}
$$

Let $0<a<b<\infty$. It follows from (2.9) and Schwarz' inequality that

$$
\begin{aligned}
& \left|\int_{a}^{b} \lambda^{\sigma}\left(\left\{(A+\lambda)^{-1}-(\Lambda+\lambda)^{-1}\right\} u, v\right) d \lambda\right|^{2} \\
& \quad \leqq C\left(\int_{a}^{b} \lambda^{2 \sigma+\theta-1}\left\|\frac{\Lambda^{1 / 2}}{\Lambda+\lambda} u\right\|^{2} d \lambda\right)\left(\int_{a}^{b} \lambda^{1-\theta}\left\|\frac{\Lambda^{\theta / 2}}{\Lambda+\lambda} v\right\|^{2} d \lambda\right) .
\end{aligned}
$$

Let $\left\{E_{t}\right\}$ be the spectral resolution of Λ. Then we have

$$
\begin{aligned}
\int_{a}^{b} \lambda^{1-\theta}\left\|\frac{\Lambda^{\theta / 2}}{\Lambda+\lambda} v\right\|^{2} d \lambda & \leqq \int_{0}^{\infty} \lambda^{1-\theta} d \lambda \int_{0}^{\infty} \frac{t^{\theta}}{(t+\lambda)^{2}} d_{t}\left\|E_{t} v\right\|^{2} \\
& \leqq \int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{\lambda^{1-\theta}}{(1+\lambda)^{2}} d \lambda\right) d_{t}\left\|E_{t} v\right\|^{2} \leqq C\|v\|^{2}
\end{aligned}
$$

Hence we obtain
where

$$
\begin{aligned}
\left\|\int_{a}^{b} \lambda^{\sigma}\left\{(A+\lambda)^{-1}-(\Lambda+\lambda)^{-1}\right\} u d \lambda\right\|^{2} & \leqq C \int_{a}^{b} \lambda^{2 \sigma+\theta-1} d \lambda \int_{0}^{\infty} \frac{t}{(t+\lambda)^{2}} d_{t}\left\|E_{t} u\right\|^{2} \\
& \leqq C \int_{0}^{\infty} t^{2 \sigma+\theta-1} F(t ; a, b) d_{t}\left\|E_{t} u\right\|^{2} \\
F(t ; a, b) & =\int_{a / t}^{b / t} \frac{\lambda^{2 \sigma+\theta-1}}{(\lambda+1)^{2}} d \lambda .
\end{aligned}
$$

Noting that $\lim _{a \rightarrow \infty} F(t ; a, b)=0$ and $F(t ; a, b) \leqq F(1 ; 0, \infty)<\infty$ for $-1<2 \sigma$ $+\theta-1<1$ and that $D\left(\Lambda^{\sigma}\right) \subset D\left(\Lambda^{\sigma-(1-\theta) / 2}\right)$, we conclude from the bounded convergence theorem that (2.7) exists and that (2.8) holds.

On the other hand, it follows from the definition of fractional powers or the spectral resolution of Λ that

$$
\begin{equation*}
\Lambda^{\sigma} u=\frac{\sin \pi \sigma}{\pi} \lim _{R \rightarrow \infty} \int_{0}^{R} \lambda^{\sigma}\left\{\lambda^{-1}-(\Lambda+\lambda)^{-1}\right\} u d \lambda . \tag{2.10}
\end{equation*}
$$

It follows from (2.7) and (2.10) that

$$
\begin{equation*}
w^{\prime}=\frac{\sin \pi \sigma}{\pi} \lim _{R \rightarrow \infty} \int_{0}^{R} \lambda^{\sigma}\left\{\lambda^{-1}-(A+\lambda)^{-1}\right\} u d \lambda \tag{2.11}
\end{equation*}
$$

exists. Therefore we have $u \in D\left(A^{\sigma}\right)$ and $w^{\prime}=A^{\sigma} u$ (see Kato [1]). Hence we have proved $D\left(\Lambda^{\sigma}\right) \subset D\left(A^{\sigma}\right)$. (2.3) follows from (2.7), (2.8), (2.10) and (2.11).

Similarly we get the statement for A^{*}.
Q.E.D.

Combining Theorem A-(i) and Theorem 1, we get the following
Theorem 2. Let (2.1) hold for some θ with $0 \leqq \theta<1$. Then we have $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)=V$.

Remark 3. Shimakura [9] treated another type of perturbation. He considered a not necessarily regularly accretive operator $A=\Lambda+K$ in the Hilbert space X where Λ is a strictly positive self-adjoint operator with the domain $D(\Lambda)$ dense in X, and K is a linear operator whose domain $D(K)$ contains $D(\Lambda)$. He obtained $D\left(A^{\theta}\right)=D\left(\Lambda^{\theta}\right)$ for any θ with $0 \leqq \theta \leqq 1$, assuming that the resolvent $(A+\lambda)^{-1}$ and $(\Lambda+\lambda)^{-1}$ satisfy some conditions. We note that $D(A)=D(\Lambda)$ in his case. On the other hand, in Theorem 2 we have $D(A) \neq D(\Lambda)$ generally, although we restrict ourselves to the case of regularly accretive operators. Hence our result is different from Shimakura's result.

It is interesting to investigate whether Theorem 1 can be improved or not, that is, whether $D\left(A^{\sigma}\right)=D\left(A^{* \sigma}\right)=D\left(\Lambda^{\sigma}\right)$ is valid or not for any σ with $0<\sigma<1-\theta / 2$ under condition (2.1). The following gives an affirmative example to this problem. Let $I=(0,1) \subset R$. Let $X=L_{2}(I)$ and $V=H^{2}(I)$
where $H^{2}(I)$ is the Sobolev space. For $\alpha \in \boldsymbol{C} \backslash \boldsymbol{R}$ let us put

$$
a[u, v]=\int_{I}\left(u^{\prime \prime}(x) \overline{v^{\prime \prime}(x)}+\alpha u^{\prime}(x) \overline{v^{\prime}(x)}\right) d x .
$$

The domains of fractional powers of A, A^{*} and Λ are given in terms of the boundary conditions such as

$$
\begin{align*}
& u^{\prime \prime}(0)=u^{\prime \prime}(1)=0, \tag{2.12}\\
& \int_{0}^{1} \frac{\left|u^{\prime \prime}(x)\right|^{2}}{d(x)} d x<\infty, \tag{2.13}\\
& u^{(3)}(0)-\alpha u^{\prime}(0)=u^{(3)}(1)-\alpha u^{\prime}(1)=0, \tag{2.14}\\
& \int_{0}^{1} \frac{\left|u^{(3)}(x)-\alpha u^{\prime}(x)\right|^{2}}{d(x)} d x<\infty, \tag{2.15}
\end{align*}
$$

where $d(x)=\min \{|x|,|x-1|\}$. We put

$$
E_{\alpha}=\left\{u \in H^{4}(I) ; u \text { satisfies (2.12) and (2.14) }\right\}
$$

and obtain
(2.16)

$$
D(A)=E_{\alpha}, \quad A u=u^{(4)}-\alpha u^{(2)} .
$$

For A^{*} (resp. Λ) we have (2.16) with α replaced by $\bar{\alpha}$ (resp. $\operatorname{Re} \alpha$). Clearly we have $D(A) \neq D\left(A^{*}\right) \neq D(\Lambda) \neq D(A)$. From the interpolation theorem and Grisvard [2, Theorem 8.1] it follows that

$$
\begin{array}{rll}
D\left(A^{\sigma}\right) & =\left[L_{2}(I), D(A)\right]_{\sigma} \\
& = \begin{cases}H^{4 \sigma}(I) & \left(0<\sigma<\frac{5}{8}\right) \\
\left\{u \in H^{5 / 2}(I) ; u \text { satisfies }(2.13)\right\} & \left(\sigma=\frac{5}{8}\right) \\
\left\{u \in H^{4 \sigma}(I) ; u \text { satisfies }(2.12)\right\} & \left(\frac{5}{8}<\sigma<\frac{7}{8}\right) \\
\left\{u \in H^{7 / 2}(I) ; u \text { satisfies }(2.12) \text { and }(2.15)\right\} & \left(\sigma=\frac{7}{8}\right) \\
\left\{u \in H^{4 \sigma}(I) ; u \text { satisfies }(2.12) \text { and }(2.14)\right\} & \left(\frac{7}{8}<\sigma<1\right) .\end{cases}
\end{array}
$$

The domains of fractional powers of A^{*} and Λ are given in the similar way. Therefore it follows that

$$
D\left(A^{\sigma}\right)=D\left(A^{* \sigma}\right)=D\left(\Lambda^{\sigma}\right), \quad \text { for } 0<\sigma<\frac{7}{8}
$$

and

$$
D\left(A^{\sigma}\right) \neq D\left(A^{* \sigma}\right) \neq D\left(\Lambda^{\sigma}\right) \neq D\left(A^{\sigma}\right), \quad \text { for } \frac{7}{8} \leqq \sigma \leqq 1 .
$$

On the other hand, we have for some $M_{1}>0$,

$$
\left|a_{I}[u, v]\right| \leqq|\operatorname{Im} \alpha|\left\|u^{\prime}\right\|_{L_{2}(I)}\left\|v^{\prime}\right\|_{L_{2}(I)} \leqq M_{1}\left\|\Lambda^{1 / 4} u\right\|\left\|\Lambda^{1 / 4} v\right\|
$$

where the last inequality is due to Lemma 3 in the next section. Thus this example suggests the possibility of an improvement of Theorem 1.
3. Application. We can apply Theorem 2 to the non-self-adjoint elliptic operator with non-smooth coefficients and a non-smooth boundary. Let m and n be positive integers. Let Ω be a bounded domain in R^{n} with the restricted cone property. Let $X=L_{2}(\Omega)$. Let V be the closed subspace of the Sobolev space $H^{m}(\Omega)$ including $H_{0}^{m}(\Omega)$ (the closure of $C_{0}^{\infty}(\Omega)$ in $H^{m}(\Omega)$). We denote by $\left\|\|_{m}\right.$ the norm of $H^{m}(\Omega)$. Let $a[u, v]$ be an integro-differential sesquilinear form of order m with bounded coefficients;

$$
a[u, v]=\int_{\Omega|\alpha|,|\beta| \leq m} a_{\alpha \beta}(x) D^{\alpha} u(x) \overline{D^{\beta} v(x)} d x, \quad u, v \in V,
$$

$$
\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \quad D^{\alpha}=(-\sqrt{-1})^{|\alpha|}\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}
$$

which satisfies (1.2). Let A and Λ be the operators as defined in the previous sections.

Lemma 3. In the above situation we have

$$
\left\|D^{\alpha} u\right\| \leqq C\left\|\Lambda^{|\alpha| / 2 m} u\right\|, \quad 0 \leqq|\alpha| \leqq m, u \in V
$$

Proof. It follows from the complex interpolation theory that

$$
\begin{aligned}
H^{k}(\Omega) & =\left[L_{2}(\Omega), H^{m}(\Omega)\right]_{k / m} \supset\left[L_{2}(\Omega), V\right]_{k / m} \\
& =\left[L_{2}(\Omega), D\left(\Lambda^{1 / 2}\right)\right]_{k / m}=D\left(\Lambda^{k / 2 m}\right), \quad 0 \leqq k \leqq m
\end{aligned}
$$

which gives the lemma.
Q.E.D.

Theorem 4. Suppose that
(3.1) $\quad a_{\alpha \beta}=\overline{a_{\beta \alpha}} \quad(|\alpha|+|\beta|=2 m, 2 m-1)$.

Then we have $D\left(A^{1 / 2}\right)=D\left(A^{* 1 / 2}\right)=V$.
Proof. It follows from the assumption that

$$
\left|a_{I}[u, v]\right| \leqq M_{1}\|u\|_{m-1}\|v\|_{m-1}, \quad M_{1}>0, \quad \text { for any } u, v \in V
$$

Combining the above inequality and Lemma 3, we get (2.1) for $\theta=1-1 / \mathrm{m}$. Therefore we can apply Theorem 2 to obtain the theorem.
Q.E.D.

We stress that the smoothness of the coefficients $a_{\alpha \beta}$ and the boundary $\partial \Omega$ are not assumed in Theorem 4. When the coefficients and the boundary are sufficiently smooth and when V satisfies some condition such as $V=$ $H^{m}(\Omega)$ or $V=H_{0}^{m}(\Omega)$ etc., Lions [6] also obtained Theorem 4 without assuming (3.1) by using the relations $D(A) \subset H^{2 m}(\Omega), D\left(A^{*}\right) \subset H^{2 m}(\Omega)$ and $\left[L_{2}(\Omega)\right.$, $\left.H^{2 m}(\Omega)\right]_{1 / 2}=H^{m}(\Omega)$, and applying Theorem A-(iii) with $W=H^{2 m}(\Omega)$. We note that $D(A) \subset H^{2 m}(\Omega)$ and $D\left(A^{*}\right) \subset H^{2 m}(\Omega)$ do not always hold when the coefficients and the boundary are not smooth. It seems reasonable to conjecture that Theorem 4 is valid without assuming (3.1). However this question remains open.

Our result remains valid if $a[u, v]$ has some boundary integrals containing derivatives of order $\leqq m-1$ when $\partial \Omega$ is sufficiently smooth.

References

[1] D. Fujiwara: Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad., 43, 82-86 (1967).
[2] P. Grisvard: Caractérisation de quelques espaces d'interpolation. Arch. Rat. Mech. Anal., 25, 40-63 (1967).
[3] T. Kato: Fractional powers of dissipative operators. J. Math. Soc. Japan, 13, 246-274 (1961).
[4] -: Fractional powers of dissipative operators. II. ibid., 14, 242-248 (1962).
[5] -: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, Springer (1980).
[6] J. L. Lions: Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs. J. Math. Soc. Japan, 14, 233-241 (1962).
[7] A. Mcintosh: On the comparability of $A^{1 / 2}$ and $A^{* 1 / 2}$. Proc. Amer. Math. Soc., 32, 430-434 (1972).
[8] R. Seeley: Interpolation in L^{p} with boundary condition. Studia Math., 44, 4760 (1972).
[9] N. Shimakura: Sur les domaines de puissances fractionnaires d'opérateurs. Bull. Soc. Math. France, 96, 265-288 (1968).

