88. (2, 15)-torus Knot is not Slice in CP^{2}

By Akira Yasuhara
Department of Mathematics, School of Science and Engineering,
Waseda University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1991)

§ 1. Introduction. Unless otherwise stated all manifolds and maps are smooth.

Let M be a closed 4-manifold and K a knot in $\partial\left(M-\operatorname{Int} B^{4}\right) \cong S^{3}$ where B^{4} is an embedded 4 -ball in M. If K bounds a properly embedded 2 -disk in M - Int B^{4}, then we call the knot K a slice knot in M. Let Slice (M) be the set of slice knots in M. We note that Slice $\left(S^{4}\right)$ is unequal to the set of knots in S^{3} (Fox and Milnor [1]) and Slice (S^{4}) is a subset of Slice (M). In [5], Suzuki proved that Slice $\left(S^{2} \times S^{2}\right)$ is equal to the set of knots in S^{3}, and asked the question "Is there a 4-manifold M such that $\operatorname{Slice}(M)$ is equal to neither Slice $\left(S^{4}\right)$ nor the set of knots in S^{3} ?". In this paper we shall prove the following theorem.

Theorem. The set Slice $\left(C P^{2}\right)$ does not contain a $(2,15)$-torus knot.
It is easily seen that Slice $\left(S^{4}\right)$ is a proper subset of Slice $\left(C P^{2}\right)$ (for example, see Kervaire and Milnor [2]). Thus this theorem gives an affirmative answer to Suzuki's question.

The author wishes to thank Professor Shin'ichi Suzuki for his encouragement.
§ 2. Preliminaries. In this section M means an oriented, connected, simply connected, closed 4-manifold. We need the following four lemmas to prove Theorem.

Lemma 1 (Rohlin [4]). If $\xi \in H_{2}(M ; Z)$ is represented by an embedded 2-sphere in M, then
(a) $\left|\frac{\xi^{2}}{2}-\sigma(M)\right| \leq \operatorname{rank} H_{2}(M ; Z)$ if ξ is divisible by 2 ,
(b) $\left|\frac{\xi^{2}\left(p^{2}-1\right)}{2 p^{2}}-\sigma(M)\right| \leq \operatorname{rank} H_{2}(M ; Z)$ if ξ is divisible by an odd prime p,
where ξ^{2} is the self-intersection number of ξ and $\sigma(M)$ is the signature of M.

Lemma 2 (Kervaire and Milnor [2]). Let $\xi \in H_{2}(M ; Z)$ be dual to the Stiefel-Whitney class $w_{2}(M)$. If ξ is represented by an embedded 2 -sphere in M, then $\xi^{2} \equiv \sigma(M) \bmod 16$.

Lemma 3 (Weintraub [6], Yamamoto [7]). Suppose $\xi \in H_{2}\left(M-\operatorname{Int} B^{4}\right.$, $\left.\partial\left(M-\operatorname{Int} B^{4}\right) ; Z\right)$ is represented by a properly embedded 2-disk Δ in $M-$ Int B^{4} and let K be a knot $\partial \Delta \subset \partial\left(M-\operatorname{Int} B^{4}\right)$. If the unknotting number of
K is u, then ξ is represented by an embedded 2-sphere in $M \# u\left(C P^{2} \# \overline{C P^{2}}\right)$. Here ξ is identified with its image

$$
\begin{aligned}
H_{2}\left(M-\operatorname{Int} B^{4}, \partial\left(M-\operatorname{Int} B^{4}\right) ; Z\right) \stackrel{\cong}{\rightleftarrows} & H_{2}\left(M-\operatorname{Int} B^{4} ; Z\right) \\
& \longrightarrow H_{2}\left(M \# u\left(C P^{2} \# \overline{C P^{2}}\right) ; Z\right) .
\end{aligned}
$$

Lemma 4 (Kuga [3]). Suppose M has the intersection form

$$
\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right) \oplus\langle 1\rangle,
$$

with respect to generators α, β, γ of $H_{2}(M ; Z) \cong Z \oplus Z \oplus Z$. If $x \geq 2, y \geq 2$, and $z^{2}=1$, then the homology class $x \alpha+y \beta+z \gamma$ cannot be represented by an embedded 2-sphere in M.
§ 3. Proof of Theorem. Let

$$
\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right) \oplus\langle 1\rangle
$$

be the intersection form of $S^{2} \times S^{2} \# C P^{2}$ with respect to generators α, β, γ of $H_{2}\left(S^{2} \times S^{2} \# C P^{2} ; Z\right) \cong Z \oplus Z \oplus Z$. There exist mutually disjoint ten properly embedded 2-disks $\Delta_{1}, \cdots, \Delta_{10}$ such that $\Delta_{1} \cup \cdots \cup \Delta_{10}$ represents $2 \alpha+8 \beta \in$ $H_{2}\left(S^{2} \times S^{2}-\operatorname{Int} B_{1}^{4}, \partial\left(S^{2} \times S^{2}-\operatorname{Int} B_{1}^{4}\right) ; Z\right)$ and such that $\partial\left(\Delta_{1} \cup \cdots \cup \Delta_{10}\right) \subset$ $\partial\left(S^{2} \times S^{2}-\operatorname{Int} B^{4}\right)$ is the link as illustrated by Fig. 1. It is not hard to see that nine strips b_{1}, \cdots, b_{9} connecting the 2-disks $\Delta_{1}, \cdots, \Delta_{10}$ can be chosen so that $D_{1}=\Delta_{1} \cup \cdots \cup \Delta_{10} \cup b_{1} \cup \cdots \cup b_{9}$ is an embedded 2 -disk in $S^{2} \times S^{2}-\operatorname{Int} B_{1}^{4}$ and so that $\partial D_{1} \subset \partial\left(S^{2} \times S^{2}-\operatorname{Int} B_{1}^{4}\right)$ is a $(-2,15)$-torus knot as illustrated by Fig. 2. Thus this ($-2,15$)-torus knot bounds the embedded 2-disk D_{1} which represents $2 \alpha+8 \beta \in H_{2}\left(S^{2} \times S^{2}-\operatorname{Int} B^{4}, \partial\left(S^{2} \times S^{2}-\operatorname{Int} B^{4}\right) ; Z\right)$.

Suppose Slice $\left(C P^{2}\right)$ contains a $(2,15)$-torus knot, then a $(2,15)$-torus

Fig. 1

Fig. 2
knot bounds a properly embedded 2-disk D_{2} in $C P^{2}-\operatorname{Int} B_{2}^{4}$. This implies that there exists an integer z such that $z \gamma \in H_{2}\left(C P^{2}-\operatorname{Int} B_{2}^{4}, \partial\left(C P^{2}-\operatorname{Int} B_{2}^{4}\right)\right.$; Z) is represented by the properly embedded 2-disk D_{2} in $C P^{2}-\operatorname{Int} B_{2}^{4}$. Since there exists an orientation reversing diffeomorphism from the pair $\left(\partial\left(S^{2} \times S^{2}-\operatorname{Int} B_{1}^{4}\right), \partial D_{1}\right)$ to the pair $\left(\partial\left(C P^{2}-\operatorname{Int} B_{2}^{4}\right), \partial D_{2}\right), 2 \alpha+8 \beta+z \gamma \in H_{2}\left(S^{2} \times\right.$ $S^{2} \# C P^{2}$) can be represented by the embedded 2-sphere $D_{1} \cup D_{2}$ in $S^{2} \times S^{2} \# C P^{2}$.

If z is even, then $2 \alpha+8 \beta+z \gamma$ is divisible by 2. By Lemma 1 , we have

$$
\begin{equation*}
\left|\frac{-32+z^{2}}{2}-1\right| \leq 3 . \tag{1}
\end{equation*}
$$

Moreover, by using the fact that the unknotting number of a (2, 15)-torus knot is 7 and Lemma 3, we find that z_{γ} is represented by an embedded 2sphere in $C P^{2} \# 7\left(C P^{2} \# \overline{C P^{2}}\right)$. By Lemma 1, we have

$$
\begin{equation*}
\left|\frac{z^{2}}{2}-1\right| \leq 15 \tag{2}
\end{equation*}
$$

We note that there is no even integer z which satisfies inequalities (1) and (2). Therefore z is not even. That is, either $z^{2}=1$ or z is divisible by an odd prime p. In the latter case, since z_{γ} is represented by an embedded 2 -sphere in $C P^{2} \# 7\left(C P^{2} \# \overline{C P^{2}}\right)$,

$$
\left|\frac{z^{2}\left(p^{2}-1\right)}{2 p^{2}}-1\right| \leq 15
$$

by Lemma 1. It follows that

$$
z^{2} \leq 32\left(1+\frac{1}{p^{2}-1}\right) \leq 36
$$

This implies $z^{2}=9$ or 25.
On the other hand, since $2 \alpha+8 \beta+z \gamma$ is dual to $w_{2}\left(S^{2} \times S^{2} \# C P^{2}\right), z^{2} \equiv 1$ $\bmod 16$ by Lemma 3. Therefore we have $z^{2}=1$. However, $z^{2} \neq 1$ by Lemma 4, a contradiction. Hence Slice ($C P^{2}$) does not contain a (2,15)-torus knot. This completes the proof.

References

[1] R. H. Fox and J. W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots. Osaka J. Math., 3, 257-267 (1966).
[2] M. A. Kervaire and J. W. Milnor: On 2-spheres in 4-manifolds. Proc. Nat. Acad. Sci. U.S.A., 47, 1651-1657 (1961).
[3] K. Kuga: Representing homology classes of $S^{2} \times S^{2}$. Topology, 23, 133-137 (1984).
[4] V. A. Rohlin: Two-dimensional submanifolds of four-dimensional manifolds. Functional Anal. Appl., 5, 39-48 (1974).
[5] S. Suzuki: Local knots of 2-spheres in 4-manifolds. Proc. Japan Acad., 45, 3438 (1969).
[6] S. H. Weintraub: Inefficiently embedded surfaces in 4-manifolds. Algebraic Topology Aarhus 1978 (eds. J. L. Dupont and I. H. Madsen). Lect. Notes in Math., vol. 763, Springer-Verlag, Berlin, New York (1979).
[7] M. Yamamoto: Lower bounds for the unknotting numbers of certain torus knots. Proc. Amer. Math. Soc., 86, 519-524 (1982).

