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On the Divisor Function and Class Numbers
of Real Quadratic Fields. III

By R. A. MOLLIN*) and H. C. WILLIAMS**)

(Communicated by Shokichi IYANAGA, M. d. A., Dec. 12, 1991)

Abstract: Using the techniques which we developed concerning the
interrelationships between reduced ideals and continued fractions we prove
a general result which gives bounds from below for the class number h(d)
of a real quadratic field Q(/). The proofs are combinatorial in nature.
Applications are given as well.

1. Notation and preliminaries. Throughout d will be a positive
square-free integer. Let o-(a-l+/d)/a where a=2 if d----_l (mod 4)
and a=l if d--2, 3 (mod 4). Let [a, ] be the module {x+fly" x, y e Z} and
note that the maximal order (ring of integers) ) o K=Q(/d ) is [1,
The discriminant A of K is (o-)=4d/a, and the absolute norm of a is
N(a)=a where is the algebraic conjugate of x.

A non-zero ideal of can be written as I=[a, b+c(o] where a, b, c e
Z, aO, c lb, c la and aclN(b/co). Here a and cl are unique and a is the
least positive integer in I, denoted L(I)--a. Also the norm of I--N(I)--
Icla. The ideal conjugate to I, denoted i is given by i=[a, b/c]. If
I=(a) is principal then N(I)=IN() I. If IN] (where denotes equivalence
of ideals in the class group C of K) then there is a e I such that (y)J=
(L(J))I.

An ideal is called primitive i L(I)--N(I); i.e., Ic[=l. (Henceforth we
shall consider only primitive ideals.) I is called reduced i I is primitive
and there does not exist a non-zero e I such that both la! L(I) and
L(I). A more illuminating geometrical interpretation of this is to consider
the lattice of the ideal I, (i.e., points (a, )) for all e I, and look at the
square centered at the origin with vertices (a, a), (-a, a), (-a, -a) and
(a,-a), where a--N(I). Then if the only element of the ideal to be ound
inside this square is the zero element, we say that I is reduced.

Now we look at the connection between reduced ideals and continued
fra,ctions which will be central to our results contained herein.

If I=[N(I), b/w] is primitive then the expansion of (b+oo)/N(I) as a
continued fraction proceeds as follows. (Po, Qo)=(ab+a-1, aN(I)), a0=
[(P0+/-)/Qol, (where denotes the greatest integer tunction), and re-
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cursively for i_0;
P/=aQ--P, Q/=(d-P/)/Q, and a/=[(P/+/-)/Q/].
Thus, if I is a reduced ideal then the continued fraction expansion of

(b+o)/N(I) is (a0, a, a,...,a} of period length k. Moreover as devel-
oped in [10] the continued fraction expansion of (b+w)/N(I) yields all of
the reduced ideals in G equivalent to I, in the following sense

Io [Qo /a, (Po +/ d ) /a]=I- Ii [Q1/a, (PI+/-)/a]

(and I=Io=I, see [10, 3, p. 410]). Thus the (Pi//d)/Qi are the complete
quotients in the continued fraction expansion of (b+w)IN(I).

Remark 1.1. The above shows that the Q/a’s represent the norms
of all reduced ideals equivalent to I. Also k represents the exact number
of reduced ideals in the class containing I. We call the set of reduced
ideals I0, L,’.., I_ a cycle of reduced ideals and call k the period length
of the cycle.

The above development suggests the following generalization of (simi-
lar but weaker) results in [2]-[3] which we will need throughout the next
section.

Theorem 1.1. Let I=[N(I), b+w] be a reduced ideal in . More-
over in what follows all Q’s are those appearing in the continued fraction
expansion of (b+ (o) /N(I).

(a) If J is reduced and IJ then N(J)=Q/a for some i with 1_i
_k.

(b ) If J and ] are the only ideals of norm N(J), where J is reduced,
and N(J)=Q/a or some i with lik, then either J=I or j=I.

2. Class numbers and the divisor function. In what ollows we
will need some notation. Let P={p, p,..., p} be a set of nl distinct

" b0,primes, and let A be a positive integer. Set P(A)= {s- ]-I= P
s_A and if pld then b_l}. Let I be a fixed reduced ideal in ( and set
((d)= {norms of all primitive ideals J such that J I}. Finally set (d)
{Q/a" 1_i_k in the continued fraction expansion of (b+w) IN(I)}.
The ollowing result generalizes results in [1] as well as [6, Theorem

2.1, p. 275]. It also continues work in [5] and [7]-[8].
r(x) denotes the divisor function, i.e., the number of positive divisors

of x, n(x) denotes the number of distinct prime divisors of x which ramify
in K, and (/) denotes the Kronecker symbol.

Theorem 2.1. Let P be a finite set of primes p with (d/p)=/=-l, A a
positive integer, and I a primitive product of ramified ideals (possibly
I-- 1).

If P(A) (d)= [A, N(I)} then we have

h(d)> r(A)-2 if N(I) IA } where n=n(n/N(I)).
Jr(A) if N(I) does not divide A

Proof. Let [p, p, ...} be the (finite) set of distinct prime factors of A.
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(*)

and

The set of indices {1, 2,...} of these primes will be divided into two (dis-
joint) subsets X and Y as follows, i e X if and only if p is unramified,
and ] e Y if and only if p is ramified.

Letting A--]-[ep? I-[er P we see that any divisor of A can be ex-
pressed in the orm exp eroP where 0Z, and YoY. Thus
a combination c=(()e, Yo)of an ]X-tuple (Z) of integers and a subset
Y0 of Y represents a divisor of A; whence, the set S of all these combina-
tions has cardinality r(A). Since A e (d) then ex,r?I for some

]p. We now fix such primes and let (c) denote the ideal class of
0 in K. Thus is a map of S into the ideal class group

of K.
Claim 1. If A is not divisible by N(I) then is one-to-one.
Let (c)=(c) where c, and c represent (respectively) ezr- 1 where we may assume withoutand exr. Thus, XY1

loss of generality that Z--Z= 1 for all i e Y Y0 U Y because =for all i e Y. Furthermore it is clear that we may also assume without
loss of generality that eZ,rl-l. Since Iexr?: then I
e-’- er_r,=J, say. Since N(J)A then by hypothesis
either N(J)=A or N(J)=N(I). If N(J)=A then Z=p for all ie X and

Y= (in which case c=c), or "=Z-P for all i eX and I= er-r,;
i.e., N(I) A.

Claim 2. If N(I)A then (c)=(c) for exactly 2 distinct pairs
(c, c) with cc where n=n(A IN(I)).

From the proof of Claim 1 we have that if N(I)A and (c)=(c)
then

iX iY

I--.
iY-Y1

The number of distinct relationship which (*) generates is clearly

i=l

In the following application an ERD-type means an Extended Richaud-
Degert type; i.e., a form d-b+r where 4b=_0 (mod r).

Corollary 2.1. Let d--b+rl (mod 4), with lr[2b and r odd be of
ERD-type. Then h(d)_r((2b-]r-l[)/2).

Proof. Let P= {primes p dividing A (2b-lr- 11)/2} and let I be the
ideal above 2. Since A/-then by Theorem 1.1, P(A)_(d)_P(A)
,(d). Now we explicitly calculate the ,(d) by looking at the continued

{1 if d_3 (mod4)} To avoidfraction expansion (/d +a)/2 where a= 0 if d_2 (mod 4)
trivialities we assume d2.
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Case 1o [/-]=b;i.e., r0. Then
i 0 1 2

Q 2

(r+l)/2

b+(r-1)/2 b--(r--1)/2

(b +o-- 1)/2 1 if =

--lift=

Case 2:. [/dl=b--1; i.e., r<0. Then
i 0 1 2 3
P b-1 b+r b+r
Q 2 b+(r-1)/2 -2r
a (b+-1)/2 2 --(b+r)/r

3
if r b }(r+ 1)/2 if r b

2r if r< b }b+(r--1)/2 if r=b

{b:r)/rr=bif r<b}

Thus in either case we see by the choice of P that (d)P(A)=
{2, A}. We now iavoke Theorem 2.1 and we have the result.

Remark 2.1. If Irl=l in Corollary 2.1 then we have a sharper result
in [5] where we used different techniques, (which exist only for narrow
R-D-types as noted in [5, Remark 3, p. 111]). Nevertheless r=l was the
only result achieved by Halter-Koch in [1] for the dl (mod 4) case. In yet
unpublished work Halter-Koch has generalized his results which are differ-
ent rom the results contained herein. Finally in [6, Theorem 2.2, p. 276]
we dealt with the case where r is even and d=b+r is of ERD-type, by
different techniques.

Now we look at the d----1 (mod 4) case.
Corollary 2.2. Let d=b2+rl (mod 4) be of ERD-type with lrl2b

and r odd. Then h(d)_r((2b--lr-ll)/4)--2 where n is the number of
prime divisors of gcd((2b--lr- 1 I)/4, d).

Proof. Let A=(2b-lr--ll)/4 and P---{primes plA and p not dividing

r} then since A(/d/2 we invoke Theorem 1.1 to get that P(A) ((d)_
P(A) (d) for any reduced ideal I. Let I =1, then an analysis of I(d)
easily shows that P(A) (d)= {1, A}. The result follows from Theorem
2.1.

Example 2.3. d=4b2+r where r divides b and r0 is odd. Then
h(d)_r(b--(r-1)/4)-2 where n is the number of prime divisors of
gcd(b-(r--1)/4, d). For example if r--1 then this is Halter-Koch’s only
result along these lines in [1] where we get h(4b+l)_r(b)--l. A number
of other examples are given in [4].

In fact if A satisfies a certain bound as in Corollaries 2.1-2.2 above
then we can say something more in general.

Corollary 2.3. If A/ d /2 and I and P are as in Theorem 2.1 with
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P(A)(d)={N(I),A} then h(d)_r(A)--2 where n is the number of
ramified prime divisors of A.

Proof. Since A /-/2 then as noted in section 1, I must be reduced
so P(A) _(d)P(A) (d), and the result now follows from Theorem
2.1.

Acknowledgements. The first author’s research is supported by
NSERC Canada grant #A8484 while that of the second author is sup-
ported by NSERC grant #A7649. Also the authors welcome the opportu-
nity to thank the referee or valuable comments, and for observations
which clarified some o the results in the paper.

Note of the Editor. In "Corrigenda for Solution of a Problem of
okoi" by the same authors, these Proc. 67 (A) page 253, line 7,
N()-- 1)u should be replaced by ((2t)/a-N()-- 1) lug.

We regret that this misplacement of parentheses and slanting strokes
was caused by our mistake.
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