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84. On the Divisor Function and Class Numbers
of Real Quadratic Fields. III

By R. A. MoLLIN®*) and H. C. WILLIAMS**)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1991)

Abstract: Using the techniques which we developed concerning the
interrelationships between reduced ideals and continued fractions we prove
a general result which gives bounds from below for the class number h(d)
of a real quadratic field Q(+'d). The proofs are combinatorial in nature.
Applications are given as well.

§ 1. Notation and preliminaries. Throughout d will be a positive
square-free integer. Let w,=(c—14++/d)/oc where ¢=2 if d=1 (mod 4)
and ¢=1 if d=2, 3 (mod 4). Let [«, 8] be the module {ex+py: x,y € Z} and
note that the maximal order (ring of integers) @, of K=Q(/ d) is [1, w,].
The discriminant 4 of K is (w,—@,)*=4d/¢*, and the absolute norm of « is
N(a) =am where 7z is the algebraic conjugate of .

A non-zero ideal of @ can be written as I=[a, b+cw,] where a, b, c e
Z,0>0, ¢|b, ¢|a and ac|N(b+cw,). Here a and |c| are unique and a is the
least positive integer in I, denoted L(I)=a. Also the norm of I=N{)=
lela. The ideal conjugate to I, denoted I is given by I=I[a,b+cm,]. If
I=(a) is principal then N(I)=|N(a)|. If I~J (where ~ denotes equivalence
of ideals in the class group Cyx of K) then there is a y eI such that (y)J=
(L()I.

An ideal is called primitive if L(UI)=N(); i.e., |c|]=1. (Henceforth we
shall consider only primitive ideals.) I is called reduced if I is primitive
and there does not exist a non-zero « € I such that both |a|<<L{) and |a|<
L(I). A more illuminating geometrical interpretation of this is to consider
the lattice of the ideal I, (i.e., points («,®)) for all « €, and look at the
square centered at the origin with vertices (a,a), (—a,a), (—a, —a) and
(a, —a), where a=N(I). Then if the only element of the ideal to be found
inside this square is the zero element, we say that I is reduced.

Now we look at the connection between reduced ideals and continued
fractions which will be central to our results contained herein.

If I=[N(I), b+ w,] is primitive then the expansion of (b+w,)/N() as a
continued fraction proceeds as follows. (P, Q,)=(cb+o—1, ¢sNI)), a,=
L(P,4++/d)/Q,l, (Where | | denotes the greatest integer function), and re-
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cursively for i>0;

P, =a0Q,—P, Q.,=d—-P,,)/Q, and ai+1=l(Pi+1+’\/E)/Qi+lJ°

Thus, if I is a reduced ideal then the continued fraction expansion of
(b+w) /N is {ay, ay, ay, - - -,a,> of period length k. Moreover as devel-
oped in [10] the continued fraction expansion of (b+w,)/N(I) yields all of
the reduced ideals in @, equivalent to I, in the following sense

I,=[Q /o, (Po++ d) [al=1~1,=][Q,/a, (P,++ d)[a]~ - -
"’Ik—1=[Qk—1/0', (Pk-—l+'\/7)/0']’
(and I,=I,=1, see [10, §3, p. 410]). Thus the (P,4++/d)/Q, are the complete
quotients in the continued fraction expansion of (b+w,) /N(I).

Remark 1.1. The above shows that the Q,/s,’s represent the norms
of all reduced ideals equivalent to I. Also k represents the exact number
of reduced ideals in the class containing I. We call the set of reduced
ideals I, I, ---,I,_, a cycle of reduced ideals and call %k the period length
of the cycle.

The above development suggests the following generalization of (simi-
lar but weaker) results in [2]-[3] which we will need throughout the next
section.

Theorem 1.1. Let I=[N(), b+w,] be a reduced ideal in Or. More-
over in what follows all Q,’s are those appearing in the continued fraction
expansion of (b+w,) /N).

(a) If J is reduced and I ~J then N(J)=Q, /s for some i with 1<1

<k.

(b) If J and J are the only ideals of norm N(J), where J is reduced,

and N(J)=Q, /o for some 1 with 1<i<k, then either J=I, or J=1I,.

§ 2. Class numbers and the divisor function. In what follows we
will need some notation. Let P={p,,p,, ---,D,} be a set of n>1 distinct
primes, and let A be a positive integer. Set P,(4)={s=[]r.p}: b,;>0,
s<A and if p,|d then b,<1}. Let I be a fixed reduced ideal in O and set
Q/(d)={norms of all primitive ideals J such that J~1I}. Finally set R,(d)
={Q;/s: 1<i<k in the continued fraction expansion of (b+w,) /N()}.

The following result generalizes results in [1] as well as [6, Theorem
2.1, p. 275]. It also continues work in [5] and [7]-[8].

=(x) denotes the divisor function, i.e., the number of positive divisors
of xz, n(x) denotes the number of distinct prime divisors of & which ramify
in K, and (/) denotes the Kronecker symbol.

Theorem 2.1. Let P be a finite set of primes p with (d/p)+—1, A a
positive integer, and I a primitive product of ramified ideals (possibly
1=1).

If P,(ANQ(d)={A, N(D)} then we have

(4)—2" if NI)|A }
h(d)z{r(A) if N) does not divide AJ’
Proof. Let {p;, p,, - - -} be the (finite) set of distinct prime factors of 4.

where n=n(A/N(I)).
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The set of indices {1,2, - - -} of these primes will be divided into two (dis-
joint) subsets X and Y as follows. ie X if and only if p, is unramified,
and j e Y if and only if p, is ramified.

Letting A=T[icx 0¥ [[;er p; We see that any divisor of A can be ex-
pressed in the form [[;cx 0% [jer,P; Where 0<p, <y, and ¢<Y, &Y. Thus
a combination e=((¢);cx, Yo) of an |X|-tuple (x,) of integers and a subset
Y, of Y represents a divisor of A; whence, the set S of all these combina-
tions has cardinality z(A4). Since A € Q,(d) then [[,cxyy Pi~1 for some
P;|p;. We now fix such primes P, and let F(c) denote the ideal class of
Meex Pt [jer, P, in K. Thus & is a map of S into the ideal class group
of K.

Claim 1. If A is not divisible by N(I) then & is one-to-one.

Let P(c,)=%%(c,) where ¢, and ¢, represent (respectively) [[;exur, P
and [[iexyr; Lii. Thus, [[iexvr, P4 *i~1, where we may assume without
loss of generality that p,—p=1 for all ieY,CY,UY} because P,=2P,
for all te Y. Furthermore it is clear that we may also assume without
loss of generality that [[,cxur, Pi*>1. Since I~T|icxyr P then I~
Miex P~ [[ier -y, Li=J, say. Since N(J)<A then by hypothesis
either N(J)=A or N(J)=N(). If N(J)=A then p,=y; for all ie X and
Y,=¢ (in which case ¢,=¢,), or v,=p,—u} for all te X and I=[[,er-v, P:;
i.e., N(D|A.

Claim 2. If N(I)|A then %(c,)=%(c,) for exactly 2" distinct pairs
(¢y, ¢) with ¢,+#c, where n=n(A |[N(I)).

From the proof of Claim 1 we have that if N(I)|A and F(c)=%(c,)
then

*) [1Px [] P~1
i€Xx 1€Y1

and

I= ] @,.

t€EY ~-Y1
The number of distinct relationship which (*) generates is clearly
n n _on
% (5)=2

In the following application an ERD-type means an Extended Richaud-
Degert type; i.e., a form d=>b*+4-r where 4b=0 (mod 7).

Corollary 2.1. Let d=b*+7r%1 (mod 4), with |r|<2b and r odd be of
ERD-type. Then h(d)>z((2b—|r—1))/2).

Proof. Let P={primes p dividing A=(2b—|r—1)/2} and let I be the
ideal above 2. Since A<4/d then by Theorem 1.1, P,(A)NQ,(d)SP,(A)N
R,(d). Now we explicitly calculate the R,(d) by looking at the continued

fraction expansion (v d +«)/2 where oc={(1) g gi_g gﬁgg 23} To avoid

trivialities we assume d>2.
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Case 1. |/ d|=b;i.e., >0. Then

i 0 1 2 3
b—rif r<b
P, a b—1 (r+1)/2 {(¢+1)/2 if r-——b}
Q0 2 =2 b—-Di2  {FT0 )
B 1if r<b (b= if r<b
a, (b+a—1)/2 1 {2 if r=b} {1 if r=> }
4
b—r if r<b
b—1 if r=b}

Case 2. |v/ d|=b—1;1i.e., r<0. Then

0 1 2 3
P, o b—1 b+r bt+r
Q, 2 b+(r—1)/2 —2r :
a, Gb+a-1)/2 2 —b+n)r

Thus in either case we see by the choice of P that R,(d)NP,(A)=
{2, A}. We now invoke Theorem 2.1 and we have the result.

Remark 2.1. If |r|=1 in Corollary 2.1 then we have a sharper result
in [5] where we used different techniques, (which exist only for narrow
R-D-types as noted in [5, Remark 3, p. 111]). Nevertheless =1 was the
only result achieved by Halter-Koch in [1] for the d=1 (mod 4) case. In yet
unpublished work Halter-Koch has generalized his results which are differ-
ent from the results contained herein. Finally in [6, Theorem 2.2, p. 276]
we dealt with the case where 7 is even and d=0b*+7r is of ERD-type, by
different techniques.

Now we look at the d=1 (mod 4) case.

Corollary 2.2. Let d=b'4+r=1 (mod 4) be of ERD-type with |r|<2b
and r odd. Then KA)>r((2b—|r—1))/4)—2" where n is the number of
prime divisors of ged(2b—|r—1)/4, d).

Proof. Let A=@2b—|r—1|)/4 and P={primes p|A and p not dividing
7} then since 4<4/ "d /2 we invoke Theorem 1.1 to get that P,(4)NQ,(d)<
P,(A)N R,(d) for any reduced ideal I. Let I=1, then an analysis of R,(d)
eagily shows that P,(4A) N R,(d)={1, A}. The result follows from Theorem
2.1.

Example 2.3. d=4b*-+r where r divides b and >0 is odd. Then
Md)>r(b—(r—1)/4)—2" where n is the number of prime divisors of
ged(b—(r—1)/4,d). For example if r=1 then this is Halter-Koch’s only
result along these lines in [1] where we get h(4b*41)>7(b)—1. A number
of other examples are given in [4].

In fact if A satisfies a certain bound as in Corollaries 2.1-2.2 above
then we can say something more in general.

Corollary 2.3. If A<y d /2 and I and P are as in Theorem 2.1 with
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P,(A)N R(d)={N(I), A} then h(d)>r(A)—2" where n is the number of
ramified prime divisors of A.

Proof. Since A<4/ d /2 then as noted in section 1, I must be reduced

so P,(A)NQ,(d)ZP,(A)N R,(d), and the result now follows from Theorem
2.1.
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Note of the Editor. In “Corrigenda for Solution of a Problem of
Yokoi” by the same authors, these Proc. 67 (A) page 253, line 7, 2t,/(c—
N(e)—1)u3 should be replaced by ((2t,) /o —N(eg)—1) [ud.

We regret that this misplacement of parentheses and slanting strokes
was caused by our mistake.
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