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1. Introduction and main result. This present note is devoted to
the supplementary result to be added to the previous paper [5].

Let/2 be a bounded domain in the n-dimensional Euclidean space R
For a nonnegative integer m and p)1 we denote by W(/2) with the norm

II,, the space of functions whose distributional derivatives of order up to
m belong to L(2), and by W,0(tg) the closure of C(tg) in W(2). In par-
ticular we set H()=W(), = ], and H(9)= Wo(9). Let B be an
integro-differential symmetric sesquilinear form of order m with bounded
coefficients"

v]=f a(x)Du(x)Dv(x)dx,B[u,

a=(a,, ..., a), D=(-j 1)’’(a/ax,),...(a/axe),
which is coercive on H(9)

B[u,u][u -Co[]U[], >0, C00 *or any ueH(9).
Let A be the operator associated with the variational triple {B, H(9), L(9)}.
That is, u e H(9) belongs to D(A), the domain of A if and only if there
exists f e L(9) such that B [u, v] =(f, v)=(a) *or any v e Hg(9) and we define

Au=f. As is known, A is a self-adjoint operator and the spectrum of A
consists o eigenvalues accumulating only at +. For a real number t let
N(t A) or simply N(t) denote the number of eigenvalues of A not exceeding
t. We put

a(x, )= a(x)+,

[z(x) Z(x)dx.
Ja(x,)l J

For r=k+aO with an integer k and 0al let (9) denote the space of
functions u in 9 such that Du are bounded and continuous for [a[ k and
IDu(x)--Du(y)l/Ix--y] (x, y e 9, xCy) are bounded for

In [5] we investigated the remainder estimate in the asymptotic formula
for the eigenvalues of A with a e (9) (ll=lfll=m) for r>0. But we
could not give any assertion for 0rm when 2mn. In this note we
settle this case.

Theorem. Let r>0. Suppose that a e (9)(]l=[l=m) and that
the boundary 9 is in C-class. Then we have

N(t)=(9)t/+O(t(-)n) as to,
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with 0=r/(r+ 1).
Remark. Theorem has already been obtained by Mtivier [4] when

0(1 and by the author when 2mn ([5, Theorem 1]) or r>m ([5,
Theorem 3]). In addition, when 2m)n or 0(vl, Theorem remains valid
under much weaker conditions on the smoothness of 32. Hence our result
obtained in Theorem is new for the case of 2mn and 1(rm.

Theorem will be proved essentially along the same line as that o [5,
Theorem 3] in which we have proceeded as ollows" First we approximate
A by operators A (0) with smooth coefficients, and estimate the kernel
of the resolvent (A-2)- by using the L-theory or following the argument
of Tanabe [7] which goes back to Beals [2]. Then applying Tsujimoto’s
theorem to a family of operators {A}>0, we get the asymptotic behavior of
the spectral unction of A, rom which we finally obtain the asymptotic
formula or N(t).

But in the proof of Theorem we need to change the above course a
little, because Dra’.(x), defined below, cannot necessarily be estimated by a
constant independent ot when 0rm. The resolvent kernel will be
estimated not or I1>-C but or 121>-C-’ with an appropriate constant
C independent of e. Hence we must consider A+C- instead of A when
we apply Tsujimoto’s theorem.

Let
M= max supla(x)lH-max max sup IDa(x)--Da(Y)l-F-1.

In the ollowing we denote by C [resp. C’] positive constants which may
differ from each other and which depend only on n, m, 9 and M [resp. n,
m, 9, M and p]. When we distinguish these constants C [resp. C’], we
write C, C, [resp. C, C,...].

2. The estimate for the resolvent kernel. First we construct the
operator A approximating A. For r--k+aO with an integer k and
0a__<l we take a unction p e C(R") with supp p(x e R Ixl<l} satis-
ying

([5, Lemma 5.1]), and put q(X)=-nq(X/D.
For 0 we consider the orm

v]= , a.(x)Du(x)Dv(x)dx,B[u,

where
a(x)= ao(x).

IIere the above convolution is well-defined, because .(tO)c_(R) ([5,
Lemma 5.2]). It follows that

la.(x)-a(x)l=Cg, [Da.(x)l<=C-’/lI/ll-’l,
and that B is coercive or sufficiently small e. Let A be the operator
associated with the variational triple {B, H(9), L(9)}.

We define /, and a.(x) by
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t l(x, D)= Da(a:aD )= a’(x)D, ,_= a(x)D.
For p> 1 we define A, by
D(A,)=W(9) Wo(9), (A,vu)(x)=(x, D)u(x) for u e D(A,v),

and have A A, from the regularity theorem.
Lemma 1. There exis C>O, C>0 and 0<0<1 such tha

Ilull,+illlullo,Cll(A,-)Ulo, for u e D(A,),
when 0<<0, IC-’ and arg(-)l3/4.

Proof. It is known that there exist C’>0, C>0 and 0<o<1 such
that
( i ) ]]u],v+ll [Ul]o,vCl](-2)u[o,v for u e D(A,v),
when 0<e<eo,C and larg(-2)l3/4 ([1]).

Using the interpolation inequality
el]u[l,vC’(e[lu]],v+-/(-)l[Ul]o,v), 0]2m-1

for >0 and ?>0, we have
( 2 ) [[(A,v--)ullo,v

mal2m-1
2m-1

j=m

G c’(r u1,+r--llu 0,)
for any >0. In view of (1) and (2) we get

lu I,+1 luilo,GCll(A,-)ullo,+C(iluli,+-- lullo,).
Taking ? so that C1/2 and putting C=max{2Cy-, C} and C=2C,
we get the lemma. Q.E.D.

For =(, ., ) e C, we define A,, by
D(A,v) D(A,v)= W(9) Wvo(9),

(A,vu)(x)=e-(x, D)(eu(x)) for u e D(A,v).
Lemma 2. There exist C>0, C>0 and 0<0<1 such that

Ilull,v+2]l]Ullo,vCl[(A,v-2)Ullo,v for u e D(Ay,v),
when 0<e<0, ]2C[C- and arg(--2)3/4.

Proof. When -1, we have for >0
](Ay,v-A,v)U[lo,v lla(x){(D--i)--D}ullo,

mlal2m
2m k

j=l

G c’( u II, +-1 lu Iio, ).
This combined with Lemma 1 gives

u 1, +1 u o,, c (A,-)u IIo,,+C( u1, +r- 1uo,),
when 0<e<eo, lC’2e-, arg(-)l3/4 and -=<. Taking so that
C1/2 and putting C=max{2C-, C} and C=2C, we get the lemma.

Q.E.D.
Lemma 3. There exist C>0, Co>0 and 0<0<1 such that e p(A,v),

the resolvent set of Ay, and
l](A,v-2)-fl]o,vC-]lf[o,v, II(AY,v-2)-fll,ellflo,

for f e Lv(9), when 0<<0, 2CoCo- and larg(--2)]3/4.
Proof. Since Lemma 2 shows that A,v- is one-to-one, it remains to
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prove that A,-2 is onto. For this proof we follow the argument of
Tanabe [6, pp. 84-87]. We map 9 into a C-domain t by a C-diffeo
morphism, which transform A,,, into A, with continuous coefficients. We
approximate A’,, by A’,,,= A, (0) with C-coefficients. From Lem-
ma 2 it ollows that there exist C0, C0 and 0y0 1 such that

]V[2m,p+] V[0,pCl (A,,--2)v0, for v e D(A:,,),
when 0<<0, 0<e<0, IlCll>C ]3/4.- and arg(-) Further
for the formally adjoint operator (A,,)* and q with p-+q-=1 there exists
C0, which may depend on , and , such that

]v ,+]Vo,2,C]((A,,)*-)Vo, for v e WF(9) W0(9),
when 0 0, 0e e0, ] C and arg(-) 3/4. Then applying
Schechter’s result we see that e p(A,,) for lmax[CTM, C}. Since
2ep(A,,) and Ig-[(A,,-2)-[l imply g ep(A,,), it follows that
2 e p(A,,) if ]]C][>C’12-. From this we conclude that A,- is
onto. Hence the lemma follows. Q.E.D.

From the embedding theorem, the integral kernel theorem and Lemma
3 it follows that there exist an integer k and a, 0a1 (]=1, 2,..., k),
determined by n and m, such that a=n/2m and that =(A,-2)-’

has a continuous kernel satisfying

() (A,-)- (m, ) c I-I I-,= =
when 0<<e0, C2C- and arg(-)l3/4 (l]k) (the
detail discussion is found in [7]). Here and in the following we denote by
[T](x, y) the kernel of an integral operator T. Combining (3) with

and substituting = -(x-y)(C; min{]], ..., 2]})/’/]x-y], we obtain

(A-2)- (x, y) C exp(-C12 x--y). I1 IJl
=1 =1

when 00, ]]Cz- and arg(-2)]3/4 (l]k), from which it
follows that

(4) I[(A+C---)-I(x’ Y)I
C exp,(-C12i/[x-y[) [I [-,

h= j=

when 0e0 and arg(-2)g3/4 (lgjgk) if we take C=2C. Note
that the conditions [C- (lg]k) have been eliminated.

The calculation in [7, pp. 275-281] leads us rom (4) to the ollowing
estimate for the kernel of (A+C---)- through the estimate or the
kernel of exp,(--t(A+Ce-’)) for t0.

Lemma 4. There exist CO, CO and 0o1 such that

I[(A +C--)-’] (x, y)]
n/2m 1/2m[C,] exp(-C] x-y]) (2re>n)

C,{1 +log+(12]/lx-yl)-}exp(-C2[/’x-yl) (2m n)
2m 1/2m[C,x-y exp(-C2 Ix-yl) (2m<n)
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for 0s0, x, y e [2 and ,<: O.
3. Proof of Theorem. Now that we have attained Lemma 4, we

can apply Tsujimoto’s theorem ([9], see also [5, Remark of Theorem 4]) to
a family of operators {A +Ce-}0<,<0 and get for tl

t/lC(l(x))-,t-,/le(t Ce- x, x) Z()
Oe(t-C- x, x)Ct,

where e,(t;x, y) is the spectral function of A, (x)=dist(x, Off) and
=min{s, (x)}. Then it follows that

( 5 ) IN(; A.+C-) .()I {.( C z, ) .()
J

f C-1 (n-1)/2md+I Cn/2m dx

where F { dis(,)}. Using

nd he properties of ( A) or ( B, H(), L)) ([4]), we hve
( 6 ) (;A)((lg)- A-).
Cominin (5) nd (6), nd puin=-, we

wih =r/(r 1) for sucienl lrge . In he sme w we e he esti-
mate from elow. Hence Theorem follows.
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