No. 9] Proc. Japan Acad., 67, Ser. A (1991) 299

76. On the Asymptotic Remainder Estimate for the
Eigenvalues of Operators Associated with
Strongly Elliptic Sesquilinear Forms

By Yodichi Mi1YAzZAKI
School of Dentistry, Nihon University

(Communicated by Shokichi IYANAGA, M. J. A, Nov. 12, 1991)

§ 1. Introduction and main result. This present note is devoted to
the supplementary result to be added to the previous paper [5].

Let 2 be a bounded domain in the n-dimensional Euclidean space R".
For a nonnegative integer m and p>1 we denote by W7(£2) with the norm
|l .., the space of functions whose distributional derivatives of order up to
m belong to L,(2), and by W7 (2) the closure of Cy(2) in Wip(2). In par-
ticular we set H"(Q) =W (D), || lln=|l |lm,: and HMQ)=W7«(2). Let B be an
integro-differential symmetric sesquilinear form of order m with bounded
coefficients :

Blu,v]= > o@D u(x)Div(x)d,

2 lal,|Blsm
a=(a, -+, a,), D=(—+/=D'@/0w)" - -(3/0x,),
which is coercive on H'(2):
Blu, ul=s||ul?—Collul}, 6>0, C,=0 for any ue HMRQ).
Let A be the operator associated with the variational triple {B, Hy(£2), L,({)}.
That is, e H™(2) belongs to D(A), the domain of A if and only if there
exists f e L,(2) such that Blu, v1=(f, v).,q, for any v € H7(2) and we define
Au=j. As is known, A is a self-adjoint operator and the spectrum of 4
consists of eigenvalues accumulating only at +oc0. For a real number t let
N(t; A) or simply N(t) denote the number of eigenvalues of A not exceeding
t. We put
a(w, $)=l > O@)Ets,

al=|8|=m

p4() = (27)" j L (@)= j ni@)da.

For r=k+40¢>0 with an integer k and 0<¢<1 let B7(2) denote the space of
functions » in Q such that D*u are bounded and continuous for |«|<k and
| Du(x)— D*u||z—y|” (%, y € 2, x+y) are bounded for |a|=F.

In [5] we investigated the remainder estimate in the asymptotic formula
for the eigenvalues of A with a,; € B(2) (a|=|8l=m) for z>0. But we
could not give any assertion for 0<rz<m when 2m=<n. In this note we
settle this case.

Theorem. Let t>0. Suppose that a,, € B(2) (a|=|pl=m) and that
the boundary 88 is in C*™-class. Then we have

N@®=p, (Dt +0({"-2") as t—o0,
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with 0=1/(c+1).

Remark. Theorem has already been obtained by Métivier [4] when
0<7z<1 and by the author when 2m>mn ([6, Theorem 1]) or r=m ([5,
Theorem 3]). In addition, when 2m>n or 0<z<1, Theorem remains valid
under much weaker conditions on the smoothness of 62. Hence our result
obtained in Theorem is new for the case of 2m <% and 1<z<m.

Theorem will be proved essentially along the same line as that of [5,
Theorem 3] in which we have proceeded as follows: First we approximate
A by operators A, (¢>0) with smooth coefficients, and estimate the kernel
of the resolvent (A,—2)~' by using the L -theory or following the argument
of Tanabe [7] which goes back to Beals [2]. Then applying Tsujimoto’s
theorem to a family of operators {A.},.,, we get the asymptotic behavior of
the spectral function of 4,, from which we finally obtain the asymptotic
formula for N(¢).

But in the proof of Theorem we need to change the above course a
little, because D'a: (%), defined below, cannot necessarily be estimated by a
constant independent of ¢ when 0<{r<<m. The resolvent kernel will be
estimated not for |2|=C but for |1|=C:*" with an appropriate constant
C independent of . Hence we must consider A, +Ce=?" instead of A, when
we apply Tsujimoto’s theorem.

Let

7 _nr
M= max sup|a,(x)|+ max max sup | D005(@) — D'005(y)
lal+18l52m w€ @ lal=18]=m 7] =k 2,y € 9, z#y lze—yl

In the following we denote by C [resp. C’] positive constants which may
differ from each other and which depend only on n, m, 2 and M [resp. =,
m, 2, M and p]. When we distinguish these constants C [resp. C'], we
write C,, C,, .- [resp. C,C;, - --1.

§ 2. The estimate for the resolvent kernel. First we construct the
operator A, approximating A. For r=k+¢>0 with an integer k& and
0<¢<1 we take a function ¢ € C;(R*) with supp ¢C{re R"; |z|<1} satis-
fying

4o

JR p@)dz=1, j ro(@dr=0 AZ|a|<k)
n Rn
([5, Lemma 5.1]), and put ¢, (x)=c"¢(z/e).
For ¢>0 we consider the form
B [u,v]= > el D u(z)DPv(x)de,

2 lal=|Bl=m
where

@25 (X) =, * Qog().
Here the above convolution is well-defined, because $H(2)cCH (R (I5,
Lemma 5.2]). It follows that
[@5(X)— 0 ()| Ce, [ Dagy(w)| K Ce?rmrieiipi=in,
and that B, is coercive for sufficiently small . Let A, be the operator
associated with the variational triple {B,, H2), L,(2)}.
We define ., A, and a:(x) by
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A=A(x,D)= >, D¥aiD* )= 3, ai(x)De, = >, ai(x)D-.

lal=]8l=m ms|al<2m ]a =2m
For p>1 we define A, , by
DA, )=W QN Wy(2), (A, w@)=JA(®, D)u(x) forueDA,,,),
and have A,=A, , from the regularity theorem.
Lemma 1. There exist C:>0, C;>0 and 0<¢<1 such that
18, 12112l S Ci (Ao ,— D, for we DA, ),
when 0<e<eg, |2|=Cle™™ and |arg(—1)|<8rx/4.
Proof. It is known that there exist C;>0, C;>0 and 0<¢<1 such
that
(1) |l p 121, , S CH (A~ D, for we D(A, ),
when 0<e<eg, |2|=C} and |arg(—)|<3x/4 ([1]).
Using the interpolation inequality
&l y S CGE™ [l 77 ull, ), 0<j<2m—1
for ¢>0 and y>0, we have
(2) Iy MDule,< 5 llai@Deul,

/2m-1 P
=C jz_:me—m “u”J»p

SOl wllom,p+7' ", )
for any y>0. In view of (1) and (2) we get
1l AUl 5 S Gl (A = Do, CoT [ p 72", )
Taking y so that C{y<1/2 and putting C;=max{2C;;*-*",C} and C;=2Cj,
we get the lemma. Q.E.D.
For p=(@p, - - -,7.) € C*, we define A? , by
D(A:,)=D(A,, ) =W (DN W3 (D),
(A7 w)(@®)=e"" A (x, D)(e*u(x)) for ue D(A?).
Lemma 2. There exist C;>0, C;>0 and 0<e,<1 such that
| %llam,p 1411, , = Coll (A7 ,— Dulls,, for ue D(A7)),
when 0<e<g, |2|=Ctpf"=Cle™™ and |arg(—)|<3r/4.
Proof. When ¢'<|y|, we have for y>0
1AL, — A Dul, = 25 [lad@{(D—in*—DYul,,,

ms aS

k
W 2P l1welle- s,
k=m Jj=1

SOl wllam,o+1 " " 2o, p)-
This combined with Lemma 1 gives
%o, p 121 %o, S CLI (AT ,— D ullo, p + Coly | % lem, + 7 " 7 ™l o, )
when 0<e<g, |2|=Che ™™, |arg(—2A)|<3x/4 and ¢'<|y|. Taking y so that
Cir<1/2 and putting C;=max{2C;y'-*", Ci} and C;=2C;, we get the lemma.
Q.E.D.
Lemma 3. There ewxist C;>0, C},>0 and 0<e<<1 such that 1€ p(A?
the resolvent set of A, and
AT, = D o, = Cal AN llo,ps 1CAL =D f llem, » = Coll S [l »
for fe L (2), when 0<e<gy, |2|=Cllpf"=Cle™™™ and |arg(—)|<3r/4.
Proof. Since Lemma 2 shows that A? ,—2 is one-to-one, it remains to

8,0/
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prove that A7, —2 is onto. For this proof we follow the argument of
Tanabe [6, pp. 84-87]. We map 2 into a C~-domain @ by a C*-diffeo-
morphism, which transform A7, into A7, with continuous coefficients. We
approximate A7, by A7, ,=¢, x A7, (>0) with C~-coefficients. From Lem-
ma 2 it follows that there exist C},>0, C},>0 and 0<y,<1 such that
19 lom,p+1 2101, , < Chill (A2, ,— D0, for veD(Ar,)),

when 0<y<y,, 0<e<g, |2|=CL|9["=Cle™™ and |arg(—)|<3rx/4. Further
for the formally adjoint operator (/IZ,M,)* and q with p~*4-¢~*=1 there exists
C;>0, which may depend on r, ¢ and », such that

19 o, H12119 0, S2CH I (A2, 5 = DV, for v e WD N Wiy D),
when 0<y<p, 0<e<eg, [2|=C, and |arg(—)|<3x/4. Then applying
Schechter’s result we see that 1€ p(A7,,) for |2|=max{C}|yF", C;}. Since
rep(Az, ) and |p—2|||(47,,—D'<1 imply pep(Az,,), it follows that
rep(Ar, ) if || =Chlyf"=Cle®. From this we conclude that A7,—2 is
onto. Hence the lemma follows. Q.E.D.

From the embedding theorem, the integral kernel theorem and Lemma
3 it follows that there exist an integer k and a;, 0<a,<1(j=1,2,...,k),
determined by n and m, such that > *_,a;=n/2m and that [[%_.,(47,—2)"
has a continuous kernel satisfying

k k
(3) | K[ f1, A2 || <c. 11
i =
when 0<e<eg, |4,|=Cy|p™=Cre™™ and |arg(—2)|<3z/4 A<Zj< k) (the

detail discussion is found in [7]). Here and in the following we denote by
KIT1(z, y) the kernel of an integral operator T. Combining (3) with

K[ f1. A=) =ermk| 1 Az 2] @),
and substituting p= —(x—y)(C;'min{ 4], - - -, | 4 [P)"*"/|x—1y|, we obtain
| K[ [1.A=2)"|@,w| <C. 3 exp—Cutasmla—)- [] 111,
when 0<e<lg, |4;]=C,e7™ and |arg(—21,)|<3x/4 (1<Lj<k), from which it
follows that

(4) K[ 1A+ —2) w0

<0, 3 exp(=Cila*mla—y)- [T (2,

when 0<e<e and |arg(—2)|<3x/4 (1<j<Fk) if we take C,=2C,. Note
that the conditions |,|=C,e ™™ (1<j<k) have been eliminated.

The calculation in [7, pp. 275-281] leads us from (4) to the following
estimate for the kernel of (A.4+C e~ —2)~* through the estimate for the
kernel of exp(—t(A4,+C,e-*™)) for ¢>0.

Lemma 4. There exist C;>0, C,>0 and 0<e,<<1 such that

| KA+ Cie™™— D' 1(z, y)|
Cel 2=t exp(— C,|2[*™ |z —1y|) @m>n)
< Csfl+log* (2" |e—yD "texp(=C2[""z—y)  @Cm=n)
Colz—y ™" exp(— Cy| A" |x—y)) 2m<n)



No. 9] Remainder Estimate for Eigenvalues 303

for 0<e<g, 2, y € 2 and 2<0.

§ 3. Proof of Theorem. Now that we have attained Lemma 4, we
can apply Tsujimoto’s theorem ([9], see also [5, Remark of Theorem 4]) to
a family of operators {4,+C,e"*"},...., and get for t>1

le(t—Cse™™ ; @, ) — py () ™| K C(e N3 (@)t -0,

0<e (t—Cie™; x, ;)< CEV*™,
where e (¢ ; 2, y) is the spectral function of A,, §(x)=dist(z, 3R2) and ¢ \s(x)
=min{e, 6(x)}. Then it follows that

(5) |N(t;A,+Cpem)— M(Q)t"mgj le(t— Coe=™™ ; @, %) — pp (D) das
2

<[ certermndar| ctends
Te

éc‘ae\f;t(n—l)/zm_‘_cetnﬂm’
where I',.={x € 2; dist(z, 02)<¢}. Using
| B[, ul+Cse™*™||u i — B [u, ul|< Cyoe Blu, ul +Cre™*"||ulf;,
and the properties of N(t; A) or N(t; B, H(Q), L,(2)) ([4]), we have
(6) N(@; A)SN(Q+Cye)t+Cue™; A +Cie™™).
Combining (5) and (6), and putting e=¢-/®"c+1 we get
N(t ; A)""#A(Q)tnlzméoettn/2m+Ce_1t(n_1)/2méct(n—0)/2m
with §=r7/(z+1) for sufficiently large ¢. In the same way we get the esti-
mate from below. Hence Theorem follows.
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