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1. Introduction and results. This paper is a sequel to the previous
ones [5] and [6]. We continue the study of the L2-concentration in solutions
of initial value problem for the nonlinear SchrSdinger equation:

(NLS) 2iU +u+lu[4u=O, (t, x) e R R,
(Cp) t

[(IV) u(O, x)=Uo(X), x e R,
where i= /- 1, Uo e Hi=H’(R), d is the Laplacian on R.

The local existence theory for (Cp) is well known ([1], [3]); there are
T e (0, co] (maximal existence time) and a unique solution u(.) e C([0, T);
H9 of (Cp). Furthermore u satisfies
(1.1) u(O II-11 Uo II,
(1.2)
for t e [0, T). Here a=2+4/N and II’ll (ll’ll) denotes the L2(RO(L*(RO)
norm.

It is also well-known (see [2]) that, for some u0, he solution u shows
he singular behavior (blow-up) tha
(1.3) lim

for some T e (0, oo].
Of physical importance is the case N--2, when (NLS) is a model of the

stationary self-focusing of a laser beam propagating along the t-axis. It
is considered that .the singular behavior (1.3) corresponds to the focus of
the beam. Thus our purpose is to obtain more precise analysis of the be-
havior of the singular solution u(t) of (Cp) as t T. Because of its mathe-
matical interest however, we intend to develop a theory for arbitrary
dimensions N. It should be noted that (NLS) has a remarkable property
that it is invariant under the pseudo-conformal transformations.

In [6], we proved;
Proposition A. Suppose that the so.lution u(t) of (Cp) satisfies (1.3).

Let (t) be any sequence such that tn-->Tm as n-+c. Set
(A.1) --2(t)=l/llu(t)ll:/ >0 as n >o),
(A.2) Un(t, x)--SnU(t, X) N/u(t, X).
Then there exists a subsequence of (t) (we still denote it by (t)) which
satisfies the fo.llowing properties: one can find L e NU{c} and sequences
(y) in R for I<=]_L such that

*) In memory of my father.
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(A. 3) lim lye- YI-- c (] =/= k),

(A.4) .f----Un(tn, x+y)- )f weakly in H,
(A.5) f(f---f-)(. +y) f weakly in H,
(A.6) lira {E(f)-E(f--fO}=E(fO,

(A.6)’ lira E(f-- if)= E(ff),
k=l

(A. 7) lim lim f--f [ 0 (L + ),
jL

(A. 7)’ lim f--f[ 0 (L< + ),

(A.8) lim lim sup f [(f-f’)(x)]dx}--O if L-- +,
j--.L (.yR B(y;R)

(A.8)’ lim Isup l(f-f)(x)ldx}=O if L< +,
(yR B(y;R)

where R is any positive constant and B(y R)=(x e R; x--y]gR}.
Using this proposition and the characterization of Q (see (B.1) below),

we also proved in [6]
Theorem B. Let Q be a ground state (non trivial minimal L norm)

solution of
(B.1) AQ-QW[Q]Q=O, Q e H.
Under the same assumptions and notations of Proposition A, then there
exists a subsequence of (t) (we still denote it by (t)) which satisfies the
following properties" one can find a sequence (y) in R such that, for any

0, there is a positive constant K;

(B.2) lim inf ]S,u(t, x+y)dx(1-e)]]Q]
JB(R)

for any RK. In other words,

(B.3) liminf ]u(t, x)[dx(1-D[Q[[,
where B=(x e R’V; [x--y]gR} (VRK).

Remarks. (1) If Uo < Q ]], the corresponding solution u(t) exists
globally in time u(.) e C([0, ) H) L(0, Hg. The initial datum Uo=
Q(x) exp (-i]x]/2)(][Uo]]=]Q]]) leads to the solution u(t) which satisfies (1.3)
with T=I and u(t, x)l approaching to ]Q]](x) (Dirac measure) as tl
(see [7] and [9]).

(2) The spatial dilation operator S was introduced by Weinstein for
the first time ia [9]. Our scaling function , however, is different from the
one in [9].

In this paper, we extend Theorem B to show
Theorem C. Suppose that the solution u(t) of (Cp) satisfies (1.3).

Set
(c.1) (t) 1/ u(t) :/,
(c.2) Su(t, x)=u(t, x),

(C.3) A=sup lim inf su, ]S,(t, )]d}.R>O Tm kyR B(y;R)
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If A--l, then, for any 01, there are constants KO, ToO and
C([T0, T); R) such that

(C.4)

for any RK. In other words,

(C.5)
JBt

where B=(x e R Ix--r(t)2(t)l<=R2(t)} (VR>K).
Remarks. (1) Suppose that u0 [1--II Q[I and corresponding solution

u(t) of (Cp) satisfies (1.3). Then we have A--1.
(2) Suppose that u0 is radially symmetric, N=2 and correspoading

solution u(t) of (Cp) satisfies (1.3). Then we have A=I. In this case, we
can take "= 0.

(3) The conditio A=I (see (C.3)) implies that L--1 in Proposition A
for any sequence t-+T. We may regard ’(t) in Theorem C as a "ray
trajectory" for the beam described by the solutioa u(t) of (Cp) with A=I.

2. Proof of Theorem C. Suppose that the solution u(t) to (Cp)
satisfies (1.3) and

(2.1) 1=sup lim inf sup.
R>O Tm I.yR5r B(y;R)

For simplicity, we suppose N>__3. We will use the notations;
Bv-----B(y R)--(x e R Ix--ylgR}, B(t)--B(y(t) R),
u(t, x)=S()u(t, x),

P(t
J

We recall that =_(t)=l/lu(t)II:/. One can see that

Moreover we have that
(2.3)
as tT. From (2.2), (2.8) and Sobolev’s inequality, one has
(2.4) u II,<= S ’u II<S
for sufficiently small , where S is the Sobolev best constant and I1"11, de-
notes the L/(-)-norm.

We start with
Proposition 2.1. For any 0<<1, there are constants K>0, T>0

and a function 7(.) e C([T0, T); R) such that

(2.5) [ ]u(t, x+(t))ldx>l-, t e [To, T),
dBCR)

for any R>__K.
For the proof of this proposition, we prepare
Lemma 2.2. Let y, be a point such that P(T.; B(y,; R))>l--/2

holds true at a time T, e [0, T) for some constant R>O. Then there exist
positive constants 0 and F such that if [t--T,[O and ly,-y]F, then
P(t B(y R))>1 /2.

Proof of Lemma 2.2. Let A’=P(T,; B(y,; R)) and B,=B., and put
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(2.6) 3’=A’-- (1-- z/2).
We note that
(2.7) P(T, B,B)+P(T, B,--B)=P(T, B,)=A’,
for any y e R. For ’>0 defined in (2.6), there is a positive constant F
such that if lY,--YI<F, then it holds or any t that
(2.8) P(t; B--B,)<’,
since we have, by HSlder’s inequality and (2.4)

/<S[(B B,)/P(t; Bv B,)’n<p(Bv--B,)/[[u 2,

On the other hand, since u C([0, (T, + T)/2] L) (uniformly continuous
in t), there exists a positive constant 0 such that if IT,--t]<O, one has
(2.9) --’+P(T,; BB,)<P(t; BB,)
(2.10) --’+P(T, B--B,)Po(t B--B,).
Here we note that 0 depends on T,. Therefore if [T,--tlO and ]y,-y]
F, we have, adding (2.9) and (2.10),
(2.11) P(t; B.)>P(T, B)--2’

=Po(T, Bv B,)+P(T, By--B,)--2#
>=A’--P(T, B,--Bv)+Po(T, Bv--B,)--2’.

Here we have used (2.7). By (2.6), (2.8) and (2.11), we obtain
(2.12) Po(t Bv)A--3’1--/2,
if IT,--t]O and ]y-y,IF.

Proof o.f Proposition 2.1. We have by the definition (2.1) that, for
any >0, there exist K>0, T0>0 and y(t) e R for t e [To, T) such that
(2.13) Po(t;B(y(t);R))>I-/2, re[T0, T), R>=K.
We define

T*=sup{T e [To, T); Po(T; B(y(To); R))1--/2}.
By Lemma 2.2, T* > To. If T*= T, nothing to prove. We suppose T*
T. On the other hand, we have by Lemma 2.2,
(2.14) P(t;B(y(T*);R))>I--e/2, te[T*--O,T*]
for some 0>0. For brevity, we put I*=[T*--O, T*], y*=y(T*), y,=y(To),
B* B(y* R) and B, B(y, R).

Claim 1. (B* {t}) (B, {t}):/:0 for any t e I*.
Proof. Suppose that (B* {t}) (B, {t})=0 for some t e I*. Then

we have, by the definition of T* and (2.14).
l=llull>=Po(t; B*)+Po(t; B,)(1-s/2)+(1-s/2)=(2-D

for t e I*, so that we get (1-D0. Thus we reach a contradiction.
Claim 2. P(t; B*B,)I--, te [T*--O, T*).
Proof. We have, by (2.14), the definition of T* and the above claim,

1-Ilull:>=P($; B* t2 B,)
=P(t; B*)+P(t; B,)--P(t; B* f3B,)>(2--D--P(t; B* f3B,).

Thus one has
P(t B* f3B,)>I-, t e [T*--0, T*).

Now we define

’(t) y,, t e To, T* )(2.15)
[’(t)-- y* +{(T*-- t)/O}(y,--y*), t e [T*--O, T*).
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One can easily see that
(2.16) 7(.) e C([T0, T*]; R),
(2.17) P(t; Bff(t) R))l--e, t e [To, T*]
by Claim 2 and (2.14), since Bff(t) R)B* B..

We note that there is a positive constant 0’ (0) such that
(2.18) P(t;Bff(t);R))l--/2, te[T*--O’,T*]
by Lemma 2.7.

Hence repeating the above argument starting with y* instead of y.,
we can obtaia a co.ntinuous path ’(t) [To, T)-R which satisfies (C.4).

To conclude the proof of Theorem C, we must show the ollowing
lemma for the "path" ’(t) constructed in Proposition 2.1.

Lemma 2.3. There are co.nstants KilO, TIO such that

[ lug(t, x+7(t))12dx>(1-D ]QI 2, t e [TI, T),(2.19)
JB(R)

for any RKI.
Proof. Suppose the contrary, so that, any n e N, there are Rn and

tne (T--1 In, T) such that

(2.20) I" lu(t, x-t-’(t))12dx=(1-D IQ 2.
B(Rn)

According to this sequence (t), we put u(x)--u(t,, x+ ’(t)).
On the other hand, by virtue of the first concentration-compactness

lemma due to Lions (see [4; Appendix]) together with (2.1) and the latter
o (2.2), we can find a sequence (Y)n in R or the above (t) such that or
any 0,

(2.21) 1
B(R)

or sufficiently large R0 and n. We put f(x)--U(tn, x+y).
Then (ul) and (fln)n are bounded sequence in H and they converges

weakly to non trivial elements in H, since we have (2.5) and (2.21). This
is valid only or a subsequence. We shall otea extract subsequence with-
out explicitly mentioning this act. Since 0 is arbitrary, f converges
to f e H strongly in L by the latter of (2.2). One can easily see that
sup_]’(tn)--ylC by (2.5) and (2.21), so ul also converges to u e H
strongly in L. This corresponds to the case L--1 in Proposition A. Thus
we have E(u)<:O by (A.6) and (2.3), so that Ilull>:llQII ollows rom the
characterization of Q (see e.g. [6; Lemma 1.1]). Therefore letting n--c
in (2.20) (using Fatou’s lemma), we reach a contradiction.

3. Generalizations. The nonlinear term ]ul/u can be replaced by
the more general one F(u) treated in [5] and [6]; typical exa.mples of F are
(NF) F(u)=[gI4/u--Z[u[q-lu, Z e R, lql+4/N.

For generic blow-up solution, using Proposition A and the argument
performed in [5], we can prove

Theorem D. Suppose that the solution u(t) to (Cp) with the non-
linear term (NF) satisfies (1.3). Set
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(D.1)  /il u($)il7
(D.2) Su(t, x)=nu(t, x),

(D.3) A----sup liminf Isup ; IS()u(t, x)]dx}.RO Tm t.yR B(y;R)

Then we have A>_IIQII and, for any 01, there are constants K)O,
ToO and a right continuous function y e Loo([T0, T); R) such that

[ IS()u(t, x-y(t))12dx>(1-DA, t e [To, T),(D.4)
JB(R)

fo.r any R>___K.
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