8. Formation of Singularities in Solutions of the Nonlinear Schrödinger Equation*

By Hayato Nawa
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Shokichi Iyanaga, M. J. A., Jan. 14, 1991)

§ 1. Introduction and results. This paper is a sequel to the previous ones [5] and [6]. We continue the study of the L^{2}-concentration in solutions of initial value problem for the nonlinear Schrödinger equation:
(Cp) $\left\{\begin{array}{lll}\text { (NLS) } & 2 i \frac{\partial u}{\partial t}+\Delta u+|u|^{4 / N} u=0, & (t, x) \in \boldsymbol{R}^{+} \times \boldsymbol{R}^{N}, \\ \text { (IV) } & u(0, x)=u_{0}(x), & x \in \boldsymbol{R}^{N},\end{array}\right.$
where $i=\sqrt{-1}, u_{0} \in H^{1}=H^{1}\left(\boldsymbol{R}^{N}\right), \Delta$ is the Laplacian on \boldsymbol{R}^{N}.
The local existence theory for (Cp) is well known ([1], [3]); there are $T_{m} \in(0, \infty]$ (maximal existence time) and a unique solution $u(\cdot) \in C\left(\left[0, T_{m}\right)\right.$; H^{1}) of (Cp). Furthermore u satisfies

$$
\begin{equation*}
\|u(t)\|=\left\|u_{0}\right\| \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
E(u(t)) \equiv\|\nabla u(t)\|^{2}-(2 / \sigma)\|u(t)\|_{\sigma}^{\sigma}=E\left(u_{0}\right) \tag{1.2}
\end{equation*}
$$

for $t \in\left[0, T_{m}\right)$. Here $\sigma=2+4 / N$ and $\|\cdot\|\left(\|\cdot\|_{\sigma}\right)$ denotes the $L^{2}\left(\boldsymbol{R}^{N}\right)\left(L^{o}\left(\boldsymbol{R}^{N}\right)\right)$ norm.

It is also well-known (see [2]) that, for some u_{0}, the solution u shows the singular behavior (blow-up) that

$$
\begin{equation*}
\lim _{t \rightarrow T_{m}}\|\nabla u(t)\|=\|u(t)\|_{\sigma}=\infty \tag{1.3}
\end{equation*}
$$

for some $T_{m} \in(0, \infty]$.
Of physical importance is the case $N=2$, when (NLS) is a model of the stationary self-focusing of a laser beam propagating along the t-axis. It is considered that the singular behavior (1.3) corresponds to the focus of the beam. Thus our purpose is to obtain more precise analysis of the behavior of the singular solution $u(t)$ of (Cp) as $t \uparrow T_{m}$. Because of its mathematical interest however, we intend to develop a theory for arbitrary dimensions N. It should be noted that (NLS) has a remarkable property that it is invariant under the pseudo-conformal transformations.

In [6], we proved;
Proposition A. Suppose that the solution $u(t)$ of (Cp) satisfies (1.3). Let $\left(t_{n}\right)_{n}$ be any sequence such that $t_{n} \rightarrow T_{m}$ as $n \rightarrow \infty$. Set
(A.1)
$\lambda_{n} \equiv \lambda\left(t_{n}\right)=1 /\left\|u\left(t_{n}\right)\right\|_{\sigma}^{\sigma / 2} \quad(\longrightarrow 0$ as $n \longrightarrow \infty)$,
(A.2) $\quad u_{n}(t, x) \equiv S_{\lambda_{n}} u(t, x)=\lambda_{n}^{N / 2} u\left(t, \lambda_{n} x\right)$.

Then there exists a subsequence of $\left(t_{n}\right)_{n}$ (we still denote it by $\left.\left(t_{n}\right)_{n}\right)$ which satisfies the following properties: one can find $L \in N \cup\{\infty\}$ and sequences $\left(y_{n}^{j}\right)_{n}$ in \boldsymbol{R}^{N} for $1 \leqq j \leqq L$ such that
*) In memory of my father.

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|y_{n}^{j}-y_{n}^{k}\right|=\infty \tag{A.3}
\end{equation*}
$$

$$
(j \neq k)
$$

(A.4) $\quad f_{n}^{1} \equiv u_{n}\left(t_{n}, x+y_{n}^{1}\right) \longrightarrow f^{1}$
weakly in H^{1},
(A.5) $\quad f_{n}^{j} \equiv\left(f_{n}^{j-1}-f^{j-1}\right)\left(\cdot+y_{n}^{j}\right) \longrightarrow f^{j}$
weakly in H^{1},
(A.6) $\quad \lim _{n \rightarrow \infty}\left\{E\left(f_{n}^{j}\right)-E\left(f_{n}^{j}-f^{j}\right)\right\}=E\left(f^{j}\right)$,
(A.6) $\quad \lim _{n \rightarrow \infty} E\left(f_{n}^{j}-f^{j}\right)=-\sum_{k=1}^{j} E\left(f^{k}\right)$,
(A.7) $\quad \lim _{j \rightarrow L} \lim _{n \rightarrow \infty}\left\|f_{n}^{j}-f^{j}\right\|_{\sigma}=0$

$$
(L=+\infty)
$$

(A.7)

$$
\lim _{n \rightarrow \infty}\left\|f_{n}^{L}-f^{L}\right\|_{\sigma}=0
$$

$$
(L<+\infty)
$$

(A.8) $\quad \lim _{j \rightarrow L} \lim _{n \rightarrow \infty}\left\{\sup _{y \in R^{N}} \int_{B(y ; R)}\left|\left(f_{n}^{j}-f^{j}\right)(x)\right|^{2} d x\right\}=0 \quad$ if $L=+\infty$,
(A.8) $\quad \lim _{n \rightarrow \infty}\left\{\sup _{y \in R^{N}} \int_{B(y ; R)}\left|\left(f_{n}^{L}-f^{L}\right)(x)\right|^{2} d x\right\}=0 \quad$ if $L<+\infty$,
where R is any positive constant and $B(y ; R)=\left\{x \in R^{N} ;|x-y| \leqq R\right\}$.
Using this proposition and the characterization of Q (see (B.1) below), we also proved in [6]

Theorem B. Let Q be a ground state (non trivial minimal L^{2} norm) solution of
(B.1)

$$
\Delta Q-Q+|Q|^{4 / N} Q=0, \quad Q \in H^{1}
$$

Under the same assumptions and notations of Proposition A, then there exists a subsequence of $\left(t_{n}\right)_{n}$ (we still denote it by $\left.\left(t_{n}\right)_{n}\right)$ which satisfies the following properties: one can find a sequence $\left(y_{n}\right)_{n}$ in \boldsymbol{R}^{N} such that, for any $\varepsilon>0$, there is a positive constant K;

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{B(R)}\left|S_{\lambda_{n}} u\left(t_{n}, x+y_{n}\right)\right|^{2} d x \geqq(1-\varepsilon)\|Q\|^{2} \tag{B.2}
\end{equation*}
$$

for any $R \geqq K$. In other words,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{B_{n}}\left|u\left(t_{n}, x\right)\right|^{2} d x \geqq(1-\varepsilon)\|Q\|^{2} \tag{B.3}
\end{equation*}
$$

where $B_{n}=\left\{x \in R^{N} ;\left|x-y_{n} \lambda_{n}\right| \leqq R \lambda_{n}\right\}(\forall R \geqq K)$.
Remarks. (1) If $\left\|u_{0}\right\|<\|Q\|$, the corresponding solution $u(t)$ exists globally in time ; $u(\cdot) \in C\left([0, \infty) ; H^{1}\right) \cap L^{\infty}\left(0, \infty ; H^{1}\right)$. The initial datum $u_{0}=$ $Q(x) \exp \left(-i|x|^{2} / 2\right)\left(\left\|u_{0}\right\|=\|Q\|\right)$ leads to the solution $u(t)$ which satisfies (1.3) with $T_{m}=1$ and $|u(t, x)|^{2}$ approaching to $\|Q\|^{2} \delta(x)$ (Dirac measure) as $t \rightarrow 1$ (see [7] and [9]).
(2) The spatial dilation operator S_{λ} was introduced by Weinstein for the first time in [9]. Our scaling function λ, however, is different from the one in [9].

In this paper, we extend Theorem B to show
Theorem C. Suppose that the solution $u(t)$ of (Cp) satisfies (1.3). Set

$$
\begin{align*}
& \lambda(t)=1 /\|u(t)\|_{\sigma}^{\sigma^{\prime 2}} \tag{C.1}\\
& S_{\lambda} u(t, x)=\lambda^{n / 2} u(t, \lambda x), \tag{C.2}\\
& A \equiv \sup _{R>0} \liminf _{t \dagger T_{m}}\left\{\sup _{y \in \mathbb{R}^{N}} \int_{B(y ; R)}\left|S_{\lambda(t)} u(t, x)\right|^{\sigma} d x\right\} . \tag{C.3}
\end{align*}
$$

If $A=1$, then, for any $0<\varepsilon<1$, there are constants $K>0, T_{0}>0$ and $\gamma(\cdot) \in$ $C\left(\left[T_{0}, T_{m}\right) ; R^{N}\right)$ such that

$$
\begin{equation*}
\int_{B(R)}\left|S_{\lambda(t)} u(t, x+\gamma(t))\right|^{2} d x>(1-\varepsilon)\|Q\|^{2} \tag{C.4}
\end{equation*}
$$

for any $R \geqq K$. In other words,

$$
\begin{equation*}
\int_{B_{t}}|u(t, x)|^{2} d x>(1-\varepsilon)\|Q\|^{2} \tag{C.5}
\end{equation*}
$$

where $B_{t}=\left\{x \in \boldsymbol{R}^{N} ;|x-\gamma(t) \lambda(t)| \leqq R \lambda(t)\right\}(\forall R \geqq K)$.
Remarks. (1) Suppose that $\left\|u_{0}\right\|=\|Q\|$ and corresponding solution $u(t)$ of (Cp) satisfies (1.3). Then we have $A=1$.
(2) Suppose that u_{0} is radially symmetric, $N=2$ and corresponding solution $u(t)$ of (Cp) satisfies (1.3). Then we have $A=1$. In this case, we can take $\gamma \equiv 0$.
(3) The condition $A=1$ (see (C.3)) implies that $L=1$ in Proposition A for any sequence $t_{n} \rightarrow T_{m}$. We may regard $\gamma(t)$ in Theorem C as a "ray trajectory" for the beam described by the solution $u(t)$ of (Cp) with $A=1$.
§2. Proof of Theorem C. Suppose that the solution $u(t)$ to (Cp) satisfies (1.3) and

$$
\begin{equation*}
1=\sup _{R>0} \liminf _{t \backslash T_{m}}\left\{\sup _{y \in R^{N}} \int_{B(y ; R)}\left|S_{\lambda(t)} u(t, x)\right|^{\sigma} d x\right\} . \tag{2.1}
\end{equation*}
$$

For simplicity, we suppose $N \geqq 3$. We will use the notations;

$$
\begin{aligned}
& B_{y}=B(y ; R)=\left\{x \in R^{N} ;|x-y| \leqq R\right\}, \quad B_{v(t)}=B(y(t) ; R), \\
& u_{\lambda}(t, x)=S_{\lambda(t)} u(t, x), \\
& P_{\sigma}(t ; \Omega)=\int_{\Omega}\left|u_{2}(t, x)\right|^{\sigma} d x \quad \text { for any } \Omega \subset R^{N} .
\end{aligned}
$$

We recall that $\lambda \equiv \lambda(t)=1 /\|u(t)\|_{\sigma}^{\sigma / 2}$. One can see that

$$
\begin{equation*}
\left\|u_{\lambda}\right\|=\|u\|=\left\|u_{0}\right\|, \quad\left\|u_{\lambda}\right\|_{\sigma}=1 \tag{2.2}
\end{equation*}
$$

Moreover we have that

$$
\begin{equation*}
E\left(u_{\lambda(t)}\right)=\lambda^{2}(t) E(u(t))=\lambda^{2}(t) E\left(u_{0}\right) \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

as $t \rightarrow T_{m}$. From (2.2), (2.3) and Sobolev's inequality, one has

$$
\begin{equation*}
\left\|u_{2}\right\|_{2^{*}} \leqq S\left\|\nabla u_{2}\right\| \leqq S \tag{2.4}
\end{equation*}
$$

for sufficiently small λ, where S is the Sobolev best constant and $\|\cdot\|_{2^{*}}$ denotes the $L^{2 N /(N-2)}$-norm.

We start with
Proposition 2.1. For any $0<\varepsilon<1$, there are constants $K>0, T_{0}>0$ and a function $\gamma(\cdot) \in C\left(\left[T_{0}, T_{m}\right) ; R^{N}\right)$ such that

$$
\begin{equation*}
\int_{B(R)}\left|u_{\lambda}(t, x+\gamma(t))\right|^{\sigma} d x>1-\varepsilon, \quad t \in\left[T_{0}, T_{m}\right), \tag{2.5}
\end{equation*}
$$

for any $R \geqq K$.
For the proof of this proposition, we prepare
Lemma 2.2. Let y_{*} be a point such that $P_{\sigma}\left(T_{*} ; B\left(y_{*} ; R\right)\right)>1-\varepsilon / 2$ holds true at a time $T_{*} \in\left[0, T_{m}\right)$ for some constant $R>0$. Then there exist positive constants θ and Γ such that if $\left|t-T_{*}\right|<\theta$ and $\left|y_{*}-y\right|<\Gamma$, then $P_{o}(t ; B(y ; R))>1-\varepsilon / 2$.

Proof of Lemma 2.2. Let $A^{\prime}=P_{o}\left(T_{*} ; B\left(y_{*} ; R\right)\right)$ and $B_{*}=B_{y_{*}}$, and put

$$
\begin{equation*}
3 \varepsilon^{\prime}=A^{\prime}-(1-\varepsilon / 2) . \tag{2.6}
\end{equation*}
$$

We note that

$$
\begin{equation*}
P_{\sigma}\left(T_{*} ; B_{*} \cap B_{v}\right)+P_{\sigma}\left(T_{*} ; B_{*}-B_{y}\right)=P_{\sigma}\left(T_{*} ; B_{*}\right)=A^{\prime} \tag{2.7}
\end{equation*}
$$

for any $y \in \boldsymbol{R}^{N}$. For $\varepsilon^{\prime}>0$ defined in (2.6), there is a positive constant Γ such that if $\left|y_{*}-y\right|<\Gamma$, then it holds for any t that

$$
\begin{equation*}
P_{\sigma}\left(t ; B_{\eta}-B_{*}\right)<\varepsilon^{\prime}, \tag{2.8}
\end{equation*}
$$

since we have, by Hölder's inequality and (2.4)

$$
P_{\sigma}\left(t ; B_{y}-B_{*}\right)^{1 / 2} \leqq \mu\left(B_{y}-B_{*}\right)^{2 / N}\left\|u_{\lambda}\right\|_{2^{*}}^{\sigma / 2} \leqq S \mu\left(B_{y}-B_{*}\right)^{2 / N} .
$$

On the other hand, since $u_{\lambda} \in C\left(\left[0,\left(T_{*}+T_{m}\right) / 2\right] ; L^{2}\right)$ (uniformly continuous in t), there exists a positive constant θ such that if $\left|T_{*}-t\right|<\theta$, one has

$$
\begin{align*}
& -\varepsilon^{\prime}+P_{\sigma}\left(T_{*} ; B_{v} \cap B_{*}\right)<P_{\sigma}\left(t ; B_{y} \cap B_{*}\right) \tag{2.9}\\
& -\varepsilon^{\prime}+P_{\sigma}\left(T_{*} ; B_{y}-B_{*}\right)<P_{\sigma}\left(t ; B_{v}-B_{*}\right) . \tag{2.10}
\end{align*}
$$

Here we note that θ depends on T_{*}. Therefore if $\left|T_{*}-t\right|<\theta$ and $\left|y_{*}-y\right|$ $<\Gamma$, we have, adding (2.9) and (2.10),

$$
\begin{align*}
P_{\sigma}\left(t ; B_{y}\right) & >P_{\sigma}\left(T_{*} ; B_{y}\right)-2 \varepsilon^{\prime} \tag{2.11}\\
& =P_{\sigma}\left(T_{*} ; B_{y} \cap B_{*}\right)+P_{\sigma}\left(T_{*} ; B_{y}-B_{*}\right)-2 \varepsilon^{\prime} \\
& \geqq A^{\prime}-P_{\sigma}\left(T_{*} ; B_{*}-B_{y}\right)+P_{\sigma}\left(T_{*} ; B_{y}-B_{*}\right)-2 \varepsilon^{\prime} .
\end{align*}
$$

Here we have used (2.7). By (2.6), (2.8) and (2.11), we obtain (2.12)

$$
P_{\sigma}\left(t ; B_{y}\right)>A^{1}-3 \varepsilon^{\prime}>1-\varepsilon / 2,
$$

if $\left|T_{*}-t\right|<\theta$ and $\left|y-y_{*}\right|<\Gamma$.
Proof of Proposition 2.1. We have by the definition (2.1) that, for any $\varepsilon>0$, there exist $K>0, T_{0}>0$ and $y(t) \in \boldsymbol{R}^{N}$ for $t \in\left[T_{0}, T_{m}\right)$ such that

$$
\begin{equation*}
P_{\sigma}(t ; B(y(t) ; R))>1-\varepsilon / 2, \quad t \in\left[T_{0}, T_{m}\right), \quad R \geqq K \tag{2.13}
\end{equation*}
$$

We define

$$
T^{*}=\sup \left\{T \in\left[T_{0}, T_{m}\right) ; P_{\sigma}\left(T^{\prime} ; B\left(y\left(T_{0}\right) ; R\right)\right)>1-\varepsilon / 2\right\} .
$$

By Lemma 2.2, $T^{*}>T_{0}$. If $T^{*}=T_{m}$, nothing to prove. We suppose $T^{*}<$ T_{m}. On the other hand, we have by Lemma 2.2, (2.14)

$$
P_{\sigma}\left(t ; B\left(y\left(T^{*}\right) ; R\right)\right)>1-\varepsilon / 2, \quad t \in\left[T^{*}-\theta, T^{*}\right]
$$

for some $\theta>0$. For brevity, we put $I^{*}=\left[T^{*}-\theta, T^{*}\right], y^{*}=y\left(T^{*}\right), y_{*}=y\left(T_{0}\right)$, $B^{*}=B\left(y^{*} ; R\right)$ and $B_{*}=B\left(y_{*} ; R\right)$.

Claim 1. $\left(B^{*} \times\{t\}\right) \cap\left(B_{*} \times\{t\}\right) \neq \emptyset$ for any $t \in I^{*}$.
Proof. Suppose that $\left(B^{*} \times\{t\}\right) \cap\left(B_{*} \times\{t\}\right)=\emptyset$ for some $t \in I^{*}$. Then we have, by the definition of T^{*} and (2.14).

$$
1=\left\|u_{\lambda}\right\|_{\sigma}^{\sigma} \geqq P_{\sigma}\left(t ; B^{*}\right)+P_{\sigma}\left(t ; B_{*}\right)>(1-\varepsilon / 2)+(1-\varepsilon / 2)=(2-\varepsilon)
$$

for $t \in I^{*}$, so that we get $(1-\varepsilon)<0$. Thus we reach a contradiction.
Claim 2. $P_{\sigma}\left(t ; B^{*} \cap B_{*}\right)>1-\varepsilon, t \in\left[T^{*}-\theta, T^{*}\right)$.
Proof. We have, by (2.14), the definition of T^{*} and the above claim,

$$
\begin{aligned}
1 & =\left\|u_{\lambda}\right\|_{\sigma}^{\sigma} \geqq P_{\sigma}\left(t ; B^{*} \cup B_{*}\right) \\
& =P_{\sigma}\left(t ; B^{*}\right)+P_{\sigma}\left(t ; B_{*}\right)-P_{\sigma}\left(t ; B^{*} \cap B_{*}\right)>(2-\varepsilon)-P_{\sigma}\left(t ; B^{*} \cap B_{*}\right) .
\end{aligned}
$$

Thus one has

$$
P_{\sigma}\left(t ; B^{*} \cap B_{*}\right)>1-\varepsilon, \quad t \in\left[T^{*}-\theta, T^{*}\right)
$$

Now we define

$$
\left\{\begin{array}{l}
\gamma(t)=y_{*}, \quad t \in\left[T_{0}, T^{*}-\theta\right) \tag{2.15}\\
\gamma(t)=y^{*}+\left\{\left(T^{*}-t\right) / \theta\right\}\left(y_{*}-y^{*}\right), \quad t \in\left[T^{*}-\theta, T^{*}\right) .
\end{array}\right.
$$

One can easily see that

$$
\begin{align*}
& \gamma(\cdot) \in C\left(\left[T_{0}, T^{*}\right] ; R^{N}\right), \tag{2.16}\\
& P_{\sigma}(t ; B(\gamma(t) ; R))>1-\varepsilon, \quad t \in\left[T_{0}, T^{*}\right] \tag{2.17}
\end{align*}
$$

by Claim 2 and (2.14), since $B(\gamma(t) ; R) \supset B^{*} \cap B_{*}$.
We note that there is a positive constant $\theta^{\prime}(<\theta)$ such that

$$
\begin{equation*}
P_{o}(t ; B(\gamma(t) ; R))>1-\varepsilon / 2, \quad t \in\left[T^{*}-\theta^{\prime}, T^{*}\right] \tag{2.18}
\end{equation*}
$$

by Lemma 2.7.
Hence repeating the above argument starting with y^{*} instead of y_{*}, we can obtain a continuous path $\gamma(t) ;\left[T_{0}, T_{m}\right) \rightarrow \boldsymbol{R}^{N}$ which satisfies (C.4).

To conclude the proof of Theorem C, we must show the following lemma for the "path" $\gamma(t)$ constructed in Proposition 2.1.

Lemma 2.3. There are constants $K_{1}>0, T_{1}>0$ such that

$$
\begin{equation*}
\int_{B(R)}\left|u_{\lambda}(t, x+\gamma(t))\right|^{2} d x>(1-\varepsilon)\|Q\|^{2}, \quad t \in\left[T_{1}, T_{m}\right) \tag{2.19}
\end{equation*}
$$

for any $R \geqq K_{1}$.
Proof. Suppose the contrary, so that, any $n \in N$, there are $R_{n} \geqq n$ and $t_{n} \in\left(T_{m}-1 / n, T_{m}\right)$ such that

$$
\begin{equation*}
\int_{B\left(R_{n}\right)}\left|u_{\lambda}\left(t_{n}, x+\gamma\left(t_{n}\right)\right)\right|^{2} d x \leqq(1-\varepsilon)\|Q\|^{2} . \tag{2.20}
\end{equation*}
$$

According to this sequence $\left(t_{n}\right)_{n}$, we put $u_{n}^{1}(x) \equiv u_{\lambda_{n}}\left(t_{n}, x+\gamma\left(t_{n}\right)\right)$.
On the other hand, by virtue of the first concentration-compactness lemma due to Lions (see [4; Appendix]) together with (2.1) and the latter of (2.2), we can find a sequence $\left(y_{n}\right)_{n}$ in \boldsymbol{R}^{N} for the above $\left(t_{n}\right)_{n}$ such that for any $\eta>0$,

$$
\begin{equation*}
1>\int_{B(R)}\left|u_{\lambda_{n}}\left(t_{n}, x+y_{n}\right)\right|^{\sigma} d x>1-\eta, \tag{2.21}
\end{equation*}
$$

for sufficiently large $R>0$ and n. We put $f_{n}^{1}(x) \equiv u_{\lambda_{n}}\left(t_{n}, x+y_{n}\right)$.
Then $\left(u_{n}^{1}\right)_{n}$ and $\left(f_{n}^{1}\right)_{n}$ are bounded sequence in H^{1} and they converges weakly to non trivial elements in H^{1}, since we have (2.5) and (2.21). This is valid only for a subsequence. We shall often extract subsequence without explicitly mentioning this fact. Since $\eta>0$ is arbitrary, f_{n}^{1} converges to $f \in H^{1}$ strongly in L^{σ} by the latter of (2.2). One can easily see that $\sup _{n \geqq 1}\left|\gamma\left(t_{n}\right)-y_{n}\right|<\infty$ by (2.5) and (2.21), so u_{n}^{1} also converges to $u^{1} \in H^{1}$ strongly in L^{σ}. This corresponds to the case $L=1$ in Proposition A. Thus we have $E\left(u^{1}\right) \leqq 0$ by (A.6) and (2.3), so that $\left\|u^{1}\right\| \geqq\|Q\|$ follows from the characterization of Q (see e.g. [6; Lemma 1.1]). Therefore letting $n \rightarrow \infty$ in (2.20) (using Fatou's lemma), we reach a contradiction.
§3. Generalizations. The nonlinear term $|u|^{4 / N} u$ can be replaced by the more general one $F(u)$ treated in [5] and [6]; typical examples of F are (NF) $\quad F(u)=|u|^{4 / N} u+\chi|u|^{q-1} u, \quad \chi \in R, \quad 1 \leqq q<1+4 / N$.

For generic blow-up solution, using Proposition A and the argument performed in [5], we can prove

Theorem D. Suppose that the solution $u(t)$ to (Cp) with the nonlinear term (NF) satisfies (1.3). Set
(D.1) $\quad \lambda(t)=1 /\|u(t)\|_{\sigma^{\sigma / 2}}$,
(D.2)

$$
S_{\lambda} u(t, x)=\lambda^{n / 2} u(t, \lambda x)
$$

$$
\begin{equation*}
A \equiv \sup _{R>0} \liminf _{t \uparrow T_{m}}\left\{\sup _{y \in R^{N}} \int_{B(y ; R)}\left|S_{\lambda(t)} u(t, x)\right|^{2} d x\right\} . \tag{D.3}
\end{equation*}
$$

Then we have $A \geqq\|Q\|^{2}$ and, for any $0<\varepsilon<1$, there are constants $K>0$, $T_{0}>0$ and a right continuous function $y \in L_{\text {loc }}^{\infty}\left(\left[T_{0}, T_{m}\right) ; \boldsymbol{R}^{N}\right)$ such that

$$
\begin{equation*}
\int_{B(R)}\left|S_{\alpha(t)} u(t, x+y(t))\right|^{2} d x>(1-\varepsilon) A, \quad t \in\left[T_{0}, T_{m}\right) \tag{D.4}
\end{equation*}
$$

for any $R \geqq K$.
Acknowledgements. The author would like to express his deep gratitude to professors D. Fujiwara, A. Inoue and T. Morita for having interest in this study and helpful discussions.

References

[1] Ginibre, J. and Velo, G.: On a class of nonlinear Schrödinger equations. I, II. J. Funct. Anal., 32, 1-71 (1979).
[2] Glassy, R. T.: On the blowing up solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys., 18, 1794-1797 (1979).
[3] Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique Theorique., 46, 113-129 (1987).
[4] Lions, P. L.: Solutions of Hartree-Fock equations for coulomb systems. Commun. Math. Phys., 109, 33-97 (1987).
[5] Nawa, H.: "Mass concentration" phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity (1989) (preprint).
[6] --: "Mass concentration" phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity. II. Kodai Math. J., 13, 333-348 (1990).
[7] Nawa, H. and Tsutsumi, M.: On blow-up for the pseudo-conformally invariant nonlinear Schrödinger equation. Funk. Ekva., 32, 417-428 (1989).
[8] Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys., 87, 567-576 (1983).
[9] -: On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm. in Partial Differential Equations, 11, 545-565 (1986).

