74. On Certain Multivalent Functions*)

By Hitoshi Saitoh
Department of Mathematics, Gunma College of Technology
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 14, 1991)

1. Introduction. Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad(p \in N=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$.
Further, we define a function $F(z)$ by

$$
\begin{equation*}
F(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z) \tag{1.2}
\end{equation*}
$$

for $\lambda \in \mathcal{C}$ and $f(z) \in A(p)$.
We cite the following well-known definition of convex functions in the unit disk U (cf. [5]). Suppose that $f(z)$ is analytic in U. Then the function $f(z)$ with $f^{\prime}(0) \neq 0$ is said to be convex if and only if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad(z \in U) \tag{1.3}
\end{equation*}
$$

We denote by K the subclass of $A=A(1)$ consisting of functions which are convex in U.

Let the functions $f(z)$ and $g(z)$ be analytic in U. Then the $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $w(z)$ analytic in U, with $w(0)=0$ and $|w(z)|<1(z \in U)$, such that $f(z)=g(w(z))(z \in U)$. We denote this subordination by $f(z) \prec g(z)$.

In [7], Saitoh proved the following theorems.
Theorem A. Let a function $f(z)$ defined by (1.1) be in the class $A(p)$. If

$$
\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\}>\alpha\left(0 \leqq \alpha<\frac{p!}{(p-j)!} ; z \in U\right),
$$

then we have

$$
\operatorname{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\}>\frac{1}{(p-j+1)!} \frac{(p-j+1)!2 \alpha+p!}{2(p-j+1)+1} \quad(z \in U)
$$

where $1 \leqq j \leqq p$.
Theorem B. Let a function $F(z)$ be defined by (1.2) for $\lambda>0$ and $f(z) \in A(p) . \quad$ If

$$
\operatorname{Re}\left\{\frac{F^{(j)}(z)}{z^{p-j}}\right\}>\alpha \quad\left(0 \leqq \alpha<\frac{p!(1-\lambda+p \lambda)}{(p-j)!} ; z \in U\right)
$$

then

$$
\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\}>\frac{(p-j)!2 \alpha+p!\lambda}{(p-j)!(2-\lambda+2 p \lambda)} \quad(z \in U)
$$

[^0]where $0 \leqq j \leqq p$.
These estimates are not sharp. In this paper, we give sharp results for above theorems.
2. Main results. New, we prove the following theorem.

Theorem 1. Let a function $f(z)$ defined by (1.1) be in the class $A(p)$. If

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\}>\alpha \quad\left(0 \leqq \alpha<\frac{p!}{(p-j)!} ; z \in U\right) \tag{2.1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\}>\frac{2 \alpha-q}{p-j+1}+2(q-\alpha) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{p-j+k} \quad(z \in U) \tag{2.2}
\end{equation*}
$$

where $1 \leqq j \leqq p, q=p!/(p-j)!$.
Proof. It follows from (2.1) that $\frac{f^{(j)}(z)}{z^{p-j}} \prec h(z)$ for $f(z) \in A(p)$, where
$q+(q-2 \alpha) z$ $h(z)=\frac{q+(q-2 \alpha) z}{1-z}$. Then we have

$$
\begin{aligned}
\frac{f^{(j-1)}(z)}{z^{p-j+1}} & =\frac{1}{z^{p-j+1}} \int_{0}^{z} t^{p-j} h(t) d t \\
& =\frac{1}{r^{p-j+1}} \int_{0}^{r} \rho^{p-j} h\left(\rho e^{i \theta}\right) d \rho\left(z=r e^{i \theta}, t=\rho e^{i \theta}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\}= & \frac{1}{r^{p-j+1}} \int_{0}^{r} \rho^{p-j} \operatorname{Reh}\left(\rho e^{i \theta}\right) d \rho \geqq \frac{1}{r^{p-j+1}} \int_{0}^{r} \rho^{p-j} \frac{q+(2 \alpha-q) \rho}{1+\rho} d \rho \\
= & \frac{2 \alpha-q}{p-j+1}+2(q-\alpha) \sum_{k=1}^{\infty}(-1)^{k-1} \frac{1}{p-j+k} r^{k-1} \\
& >\frac{2 \alpha-q}{p-j+1}+2(q-\alpha) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{p-j+k}
\end{aligned}
$$

which completes the proof of Theorem 1.
Taking $j=p$ in Theorem 1, we have
Corollary 1. [8] If

$$
\operatorname{Re}\left\{f^{(p)}(z)\right\}>\alpha \quad(0 \leqq \alpha<p!; z \in U)
$$

then we have

$$
\operatorname{Re}\left\{\frac{f^{(p-1)}(z)}{z}\right\}>2 \alpha-p!+2(p!-\alpha) \log 2 \quad(z \in U)
$$

Letting $j=1$ in Theorem 1, we have
Corollary 2. If

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha \quad(0 \leqq \alpha<p ; z \in U)
$$

then we have

$$
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}>\frac{2 \alpha-p}{p}+2(p-\alpha) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{p-1+k} \quad(z \in U)
$$

Making $j=p=1$ in Theorem 1, we have
Corollary 3. If

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha \quad(0 \leqq \alpha<1 ; z \in U)
$$

then we have

$$
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>2 \alpha-1+2(1-\alpha) \log 2 \quad(z \in U)
$$

Corollary 3 is a well-known result (cf. [3], [4]). In order to obtain the next result, we need the following lemma due to Eenigenburg, Miller, Mocanu and Reade [1].

Lemma. Let β and γ be complex numbers, and let $h(z)$ be convex in U, with $h(0)=c$ and $\operatorname{Re}(\beta h(z)+\gamma)>0(z \in U)$. Let $p(z)=c+p_{1} z+p_{2} z^{2}+\cdots$ be analytic in U and let it satisfy the differential subordination

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}<h(z) . \tag{2.3}
\end{equation*}
$$

If the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z), \quad q(0)=c \tag{2.4}
\end{equation*}
$$

has a univalent solution $q(z)$, then

$$
p(z) \prec q(z) \prec h(z)
$$

and $q(z)$ is the best dominant of the differential subordination (2.3).
We note that the univalent function $q(z)$ is said to be a dominant of the differential subordination (2.3) if $p(z) \prec q(z)$ for all $p(z)$ which satisfy the differential subordination (2.3). If $\widetilde{q}(z)$ is a dominant of (2.3) and $\tilde{q}(z) \prec q(z)$ for all dominants $q(z)$ of (2.3), the $\tilde{q}(z)$ is said to be the best dominant of the differential subordination (2.3). We can find more about differential subordinations in [2].

With the aid of the above lemma, we derive
Theorem 2. Let a function $F(z)$ be defined by (1.2) for $\lambda \in \mathcal{C}$ with $\operatorname{Re}(\lambda)>0$, for $f(z) \in A(p)$. If

$$
\begin{equation*}
\frac{F^{(j)}(z)}{(1-\lambda+\lambda p) z^{p-j}} \prec \frac{q+(q-2 \alpha) z}{1-z}=h(z)\left(0 \leqq \alpha<q=\frac{p!}{(p-j)!} ; z \in U\right), \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{f^{(j)}(z)}{z^{p-j}} \prec q(z), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=q+\frac{2(p-\alpha)(1-\lambda+\lambda p)}{\lambda z^{(1-\lambda+\lambda p) / \lambda}} \cdot \int_{0}^{z} \frac{t^{(1-\lambda+\lambda p) / \lambda}}{1-t} d t, \tag{2.7}
\end{equation*}
$$

$0 \leqq j \leqq p$ and $q(z)$ is the best dominant.
Proof. In lemma, we choose

$$
\beta=0, \quad \gamma=\frac{1-\lambda+\lambda p}{\lambda}, \quad h(z)=\frac{q+(q-2 \alpha) z}{1-z} .
$$

Then the function $h(z)$ is convex in U with $h(0)=q$. Further, for such function $h(z)$, the differential equation has the form

$$
\begin{equation*}
q(z)+\frac{\lambda}{1-\lambda+\lambda p} \cdot z q^{\prime}(z)=\frac{q+(q-2 \alpha) z}{1-z} . \tag{2.8}
\end{equation*}
$$

It follows that the equation (2.8) has the solution

$$
\begin{align*}
q(z) & =\frac{1-\lambda+\lambda p}{\lambda z^{(1-\lambda+\lambda p) / \lambda} \cdot \int_{0}^{z} t^{(1-\lambda+\lambda p) / \lambda-1} \cdot h(t) d t} \tag{2.9}\\
& =q+\frac{2(q-\alpha)(1-\lambda+\lambda p)}{\lambda z^{(1-\lambda+\lambda p) / \lambda}} \cdot \int_{0}^{z} \frac{t^{(1-\lambda+\lambda p) / \lambda}}{1-t} d t
\end{align*}
$$

which is also convex in U (the proof is similar to the proof in the class K, see for example [6], Theorem 5), hence univalent in U with $q(0)=q$. By applying lemma, we have if $p(z)$ is analytic in U with $p(0)=q$ and if

$$
\begin{equation*}
p(z)+\frac{\lambda}{1-\lambda+\lambda p} \cdot z p^{\prime}(z) \prec h(z) \tag{2.10}
\end{equation*}
$$

then

$$
p(z)<q(z)
$$

where $h(z)$ and $q(z)$ are defined in (2.5) and (2.8), respectively, any $q(z)$ is the best dominant of the differential subordination (2.10).
Letting

$$
p(z)=\frac{f^{(j)}(z)}{z^{p-j}}
$$

we have

$$
p(z)+\frac{\lambda}{1-\lambda+\lambda p} \cdot z p^{\prime}(z)=\frac{F^{(j)}(z)}{(1-\lambda+\lambda p) z^{p-j}} .
$$

Therefore, we conclude that if

$$
\frac{F^{(j)}(z)}{(1-\lambda+\lambda p) z^{p-j}} \prec \frac{q+(q-2 \alpha) z}{1-z}=h(z),
$$

then we have

$$
\frac{f^{(j)}(z)}{z^{p-j}} \prec q(z)=q+\frac{2(q-\alpha)(1-\lambda+\lambda p)}{\lambda z^{(1-\lambda+\lambda p) / \lambda}} \cdot \int_{0}^{z} \frac{t^{(1-\lambda+\lambda p) / \lambda}}{1-t} d t .
$$

Thus we complete the proof of Theorem 2.
Letting $p=1, j=1$ and $\lambda=1 / 2$ in Theorem 2, we have
Corollary 4. [4] Let $f(z) \in A$ and $\alpha<1$. If

$$
\begin{equation*}
f^{\prime}(z)+\frac{1}{2} z f^{\prime \prime}(z) \prec \frac{1+(1-2 \alpha) z}{1-z}, \tag{2.11}
\end{equation*}
$$

then we have

$$
\begin{equation*}
f^{\prime}(z)<2 \alpha-1-4(1-\alpha) \frac{z+\log (1-z)}{z^{2}} \tag{2.12}
\end{equation*}
$$

and the right hand side of (2.12) is the best dominant.
Next, Theorem 2 leads to
Theorem 3. If the function $F(z)$ is defined by (1.2) with $\lambda>0$, for $f(z) \in A(p) . \quad$ If

$$
\operatorname{Re}\left\{\frac{F^{(j)}(z)}{(1-\lambda+\lambda p) z^{p-j}}\right\}>\alpha \quad\left(0 \leqq \alpha<q=\frac{p!}{(p-j)!} ; z \in U\right)
$$

then

$$
\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\}>q+2(q-\alpha) \sum_{k=1}^{\infty}(-1)^{k} \frac{\gamma}{\gamma+k}
$$

where

$$
\gamma=\frac{1-\lambda+\lambda p}{\lambda}, \quad 0 \leqq j \leqq p .
$$

This estimate is sharp.
Taking $j=0$ in Theorem 3, we have
Corollary 5. If

$$
\operatorname{Re}\left\{\frac{F(z)}{(1-\lambda+\lambda p) z^{p}}\right\}>\alpha \quad(0 \leqq \alpha<1 ; z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}>1+2(1-\alpha) \sum_{k=1}^{\infty}(-1)^{k} \frac{\gamma}{\gamma+k} .
$$

Putting $j=p$ in Theorem 3, we have
Corollary 6. If

$$
\operatorname{Re}\left\{F^{(p)}(z)\right\}>(1-\lambda+\lambda p) \alpha \quad(0 \leqq \alpha<p!; z \in U)
$$

then

$$
\operatorname{Re}\left\{f^{(p)}(z)\right\}>p!+2(p!-\alpha) \sum_{k=1}^{\infty}(-1)^{k} \frac{\gamma}{\gamma+k} .
$$

Letting $j=1$ in Theorem 3, we have
Corollary 7. If

$$
\operatorname{Re}\left\{\frac{F^{\prime}(z)}{(1-\lambda+\lambda p) z^{p-1}}\right\}>\alpha \quad(0 \leqq \alpha<p ; z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>p+2(p-\alpha) \sum_{k=1}^{\infty}(-1)^{k} \frac{\gamma}{\gamma+k} .
$$

Making $p=1$ and $j=0$, and $p=1$ and $j=1$ in Theorem 3, we have the following corollaries.

Corollary 8. Let $f(z) \in A$. If

$$
\operatorname{Re}\left\{\frac{F(z)}{z}\right\}>\alpha \quad(0 \leqq \alpha<1 ; z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{F(z)}{z}\right\}>1+2(1-\alpha) \sum_{k=1}^{\infty} \frac{(-1)^{k}}{1+\lambda k} .
$$

Corollary 9. Let $f(z) \in A$. If

$$
\operatorname{Re}\left\{F^{\prime}(z)\right\}>\alpha \quad(0 \leqq \alpha<1 ; z \in U)
$$

then

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\}>1+2(1-\alpha) \sum_{k=1}^{\infty} \frac{(-1)^{k}}{1+\lambda k} .
$$

Remark. Putting $\lambda=1$ in Corollary 8, we have Corollary 3.

References

[1] P. Eenigenburg et al.: On a Briot-Buquest differential subordination. Rev. Roumanie Math. Pures Appl., 29, 567-573 (1984).
[2] S. S. Miller and P. T. Mocanu: Differential subordinations and univalent functions. Michigan Math. J., 28, 157-171 (1981).
[3] M. Obradovic: One property of the classes of functions whose derivative has a positive real part (to appear).
[4] S. Owa, M. Obradovic and M. Nunokawa: On certain analytic functions and subordinations. Appl. Math. Letter, 3, 41-45 (1990).
[5] Ch. Pommerenke: Univalent Functions. Vanderhoeck and Ruprecht, Göttingen (1975).
[6] S. Ruscheweyh: New criteria for univalent functions. Proc. Amer. Math. Soc., 49, 109-115 (1975).
[7] H. Saitoh: Properties of certain analytic functions. Proc. Japan Acad., 65A, 131-134 (1989).
[8] --: Some properties of certain analytic functions. Sûrikaisekikenkyûsho Kôkyûroku, Topics in Univalent Functions and Its Applications, Kyoto, 1989, 714, 160-167 (1990).
[9] D. K. Thomas: A note on Bazilevic functions. ibid., 18-21.

[^0]: *) 1990 Mathematics Subject Classifications. 30C45.

