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1. Introduction. We are concerned with geometric evolution (e.g.
motion by mean curvature) of interfaces in a smoothly bounded domain
/2 (R") whose boundary 3/2 perpendicularly intersects with interfaces.
In [12] the second author extended a level set approach introduced by
Chen-Giga-Goto [1] and Evans-Spruck [3] to this type of the Neumann
problem and obtained a unique global weak solutions for the initial value
problem provided that 2 is convex. This note reports that the convexity
assumption of 2 can be removed. The details and proofs will appear
elsewhere.

One of key ingredients is the comparison principle for the Neumann
boundary value problem for singular degenerate parabolic equations. For
the Neumann problem this principle is first established by Lions [10] for
the Hamilton-Jacobi equations. For nonsingular degenerate elliptic equa-
tions the comparison principle is established by Ishii and Lions [9]. See
also [8] for more general oblique boundary conditions. However, their
argument does not apply to singular equations. In [12] the second author
obtained the comparison principle for our problem assuming that 2 is
convex. His method appeals to the idea of [6] by regarding /2 as space
infinity. Unfortunately, the choice of test functions does not apply to
general domains. In this note we construct test functions by using local
coordinate patches near 3t9 so that they apply to general domains.

In [7] Huisken considers the interface intersecting perpendicularly
with 3t9 and moving by mean curvature. I-Ie constructed a global smooth
evolution of interfaces when f2 is a cylindrical domain D R and the initial
interface is the graph of a smooth function on D, where D is bounded.
Although our theory presented below assumes that t9 is bounded, it can be
extended to cylindrical domain D R provided D is bounded. The motion
by mean curvature with right contact angle at t9 arises as a singular
limit of a reaction-diffusion equation with the Neumann condition [11].

2. Comparison principle. We here present a simple and typical
version of our comparison principle rather than stating its general form
to avoid technical complexity. We consider an evolution equation of the
form
( 1 ) ut +F(g’u, g’u) 0 in Q-- (0, T) tO
( 2 ) u/=0 on S=.(O, T)
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where 3/3, denotes the outer normal derivative on t); Ut:U/t, 7u--
grad u; iTu denotes the Hessian of u in the space variables. We list as-
sumptions on F.
(F1) F" (R\{O})5;--R is continuous, where S denotes the space of

n n real symmetric matrices equipped with usual ordering.
(F2) F is degenerate elliptic, i.e., F(p, X+Y)_F(p, X) for all Y_0.
(F3) --co.F,(0, O)=F*(0, O)oo where F, and F* are the lower and

upper semicontinuous relaxation (envelope) of F on RS, respec-
tively, i.e.,

F,(p,X)=lim inf {r(q, Y); q=/=O, IP-ql<_, ]X-YI<_}
0

and F* ( F),. Here [X[ denotes the operator norm o X as a
self adjoint operator’ on R.

Theorem 1. Let 12 be a smoothly bounded domain in R. Suppose
that F satisfies (F1)-(F3). Let u and v be, respectively, viscosity sub- and
supersolutions of (1)-(2). If u*(O,x)<_v,(O,x), then u*<_v, on [0, T)Xg.

A definition of a viscosity (sub) solution or the Neumann problem
goes back to [10] where the Hamilton-Jacobi equation is studied. We
recall a definition of viscosity subsolution of (1)-(2) for the reader’s con-
venience. We refer to [2] and [8] or nonsingular equations. Any unction
u’Q U S-+R is called a viscosity su.bsolution o (1)-(2) i u*< o on Q and
i, whenever e C(Q J S), (t, x) e Q U S and (u*-)(t, x)-max(u*
one of the following holds
( 3 ) (t, x)+F,(V(t, x), V(t, x))<_O
( 4 ) (/,)(t, x)_O and x e
For example a urction u(t, x)=-2t-lxl a viscosity subsolution (actually
solution) of (1)-(2) with
( 5 ) F(p, X) trace ((I- p(R)p/I P ])X)
on an annulus 9 in R although 3u/3,_0 may not hold on the inner circle
of 312 in usual sense. One should be careful with the meaning of (2).

:3. Test functions. The basic strategy of the proof o Theorem 1 is
to find a parabolic super 2-jet of

w(t, x, y)=u(t, x)--v(t, y)

at a point where u*v,. This idea is the same as in [6] and we also apply
the Crandall-Ishii lemma (see e.g. [2]). Since it is difficult to compare
boundary condition (4), we take a barrier near the boundary to avoid to
handle (4). This idea is ound in [12].

For ,/, ,0 we set
(t, x, y)=w(t, x, y)-(t, x, y)
(t, x, y)= (x, y)/+B(t, x, y)
B(t, x, y)=((x)+(y)+2fl)+/(T--t).

Here e C(tO) is a ’barrier’ function of 32 satisfying"

-fl_0 in tO, =0 on 32 with a constant
,(x)= 7(x)/] 7p(x)[ and l7(x)I_ 1 on 32.



No. 8] Generalized Interface Evolution 265

If e C(tgX f2) satisfies following conditions, the method of [6] applies to
establish Theorem 1 by using (3).
(C1) (x, y)_ColX-yl with c00.
(C2) I,.+vl_cllx-yl4, I1, ]vl_c2]x-yl.
(63) ++ +l<c,lx-yl._
(C5) @(x), (x, y)}0 for x e 9, y e 9

@(y),-Z(x,y)}A0 for ye39, xe9
provided that x- y] is sufficiently small.

Here ( } denotes the inner product in R". If 9 is convex, then (x, y)=
x-y satisfies (C1)-(C5). However, for nonconx 9, this choice of
violates (C5).

Lemma 2. There exists satisfying (C1)-(C5).
Sketch of the proof. For each a e 39 there is a local coordinate Z=

(Z, ., Z") such that Z"(x)=dist (x, 9) for x e 9. Let be a cut-off func-
tion supported near a e 39 so that 3/,=0 on 9. We set

Let +0 be a cut-ff unction supported outside the boundary. We set
Ao(x, y)= +o(X)+o(y)[x-y[’.

One can take finitely many (a}= so that the sum =0A satisfies (C1)-(C5)
provided that x-y is sufficiently small. Here A=A with a=a. We set

(x, y)=p(Ix-y])lx-y]+(1-p([x-yl)) A(x, y)

with a cut-off function p(a) supported away rom a=0. One observes that
satisfies (C1)-(C5).

4. Interface evolution. We remark that the theory in [1] and [4]
can be extended to the motion of interfaces intersecting perpendicularly
with 9. The next lemma is fundamental to establish global solution for
the initial value problem of (1)-(2) by Perron’s method.

Lemma ([12]). Assume the hypotheses of Theorem 1 concerning F.
Suppose that F is geometric. Then for Uo e C() there are viscosity sub-
and supersolutions u_, u+ of (1)-(2) with u_,(O, x)=u(0, x)=uo(x).

Although our theory applies to general interace equations as in [4],
we state our results only for the motion by mean curvature just for sim-
plicity.

Theorem 4. Let Do be an open set in . Let Uo C() satisfy D0=
{X;Uo(X)O}. There is a unique viscosity solution u eC([0,)) for
(1)-(2) with (5) for arbitrary TO such that u(O, x)=Uo(X). The set D=
{(t, x); u(t, x)>0} is determined by Do and called a generalized evolution by
mean curvature with initial data Do and the right angle boundary condi-
tion.

Remark 5. In [4] D is determined by D0 and Fo={Uo(X)=O}. It turns
out D is completely determined by D0 as sho.wn in [5].

Remark 6. If we take as sketched in 3, we need C, regularity of
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9. However, by taking Z more clever way, we oly need C regularity of
3t to establish Lemma 2.
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