62. Normal Bases and λ -invariants of Number Fields

By Takashi FUKUDA^{*)} and Keiichi KOMATSU^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1991)

Let Q be the rational number field, k be a number field, i.e. a finite algebraic extension of Q, S be a set of prime ideals of k and L a finite algebraic extension of k. We denote by \mathfrak{Q}_L the integer ring of L and $v_{\mathfrak{p}}$ an additive valuation of L with respect to a prime ideal \mathfrak{p} of L. We denote by $\mathfrak{Q}_L(S)$ the ring of elements α in L with $v_{\mathfrak{p}}(\alpha) \geq 0$ for all prime ideals \mathfrak{p} of Lsuch that $\mathfrak{p} \cap k$ does not belong to S. Now let p be a fixed odd prime number, Z_p the p-adic integer ring and K a Z_p -extension of k. Then there exists a tower of cyclic extensions of k

 $k = K_0 \subset K_1 \subset \cdots \subset K_n \subset \cdots \subset K$

such that K_n is an extension of k with the degree $[K_n:k]=p^n$. For the cyclotomic Z_p -extension k_{∞} of k, we write $k_n=(k_{\infty})_n$.

Recently, Kersten and Michaliček discussed normal bases of *p*-integer rings of intermediate fields of a Z_p -extension of a CM-field and Vandiver's conjecture. Furthermore, Fleckinger and Nguyen Quang Do have discussed normal bases of *p*-integer rings of intermediate fields of a Z_p -extension of a number field. In this paper, we investigate normal bases of *S*-integer rings of intermediate fields of a Z_p -extension of an imaginary quadratic field and the Iwasawa λ -invariant.

Now we define as follows:

Definition (cf. [4]). We say, a Z_p -extension K/k has a normal S-basis, if each $\mathfrak{Q}_{K_n}(S)/\mathfrak{Q}_k(S)$ has a normal basis. Namely, there exists an element α_n of $\mathfrak{Q}_{K_n}(S)$ such that $\{\alpha_n^{\sigma} | \sigma \in G(K_n/k)\}$ is a free $\mathfrak{Q}_k(S)$ -basis of $\mathfrak{Q}_{K_n}(S)$, where $G(K_n/k)$ is the Galois group of K_n over k.

Let F be an imaginary quadratic field, F_{∞} the cyclotomic Z_p -extension of F and $\zeta_n = \exp(2\pi\sqrt{-1}/p^n)$. We put $k = F(\zeta_1)$ and $\Delta = G(k/F)$. Let δ be the order of Δ and $\chi: \Delta \to Z_p^{\times}$ the Teichmüller character (a homomorphism such that $\zeta_1^n = \zeta_1^{\chi(g)}$ for all $g \in \Delta$). We define

$$e_i = \frac{1}{\delta} \sum_{g \in \mathcal{A}} \chi(g)^i g^{-1} \in \boldsymbol{Z}_p[\mathcal{A}]$$

for each integer i. The main purpose of this paper is to prove the following:

Theorem. Let F be an imaginary quadratic field, p an odd prime number, F_{∞} , ζ_n , k, Δ and e_i as above. Let k^+ be the maximal real subfield of k, A^+ the p-primary part of the ideal class group of k^+ and S_0 the set of all prime ideals of F each of which has only one prime factor in $k(\zeta_2)$. We

^{*)} Department of Mathematics, Faculty of Science, Yamagata University.

^{**)} Department of Mathematics, Tokyo University of Agriculture and Technology.

 e_1/δ

suppose that S_0 contains all prime ideals of F lying above p and that a component $(A^+)^{e_1}$ of Δ -decomposition of A^+ is non-trivial. If there exists a Z_p -extension K of F with $K \cap F_{\infty} = F$ such that K/F has a normal S_0 -basis, then the λ -invariant of the cyclotomic Z_p -extension k_{∞}^+ of k^+ is non-zero.

In the rest of this paper, we use the same notations as above. Let S be now the set of prime ideals of k lying above primes ideals of S_0 . Let E_n be the unit group of Ω_{k_n} and E'_n the unit group of $\Omega_{k_n}(S)$. We denote by $N_{n,0}$ the norm of k_n over k. Then we have the following:

Lemma 1. (1) $(E_0/N_{n,0}(E_n))^{e_1} \cong (E_0N_{n,0}(E'_n)/N_{n,0}(E'_n))^{e_1} = (E'_0/N_{n,0}(E'_n))^{e_1},$ (2) $(E_0/E_0^{p^n})^{e_1} \cong (E_0E'_0^{p^n}/E'_0^{p^n})^{e_1} = (E'_0/E'_0^{e_n})^{e_1}.$

Proof. Since only one prime ideal of k_n lies above each prime ideal of S, we have $E_0 \cap N_{n,0}(E'_n) = N_{n,0}(E_n)$. This shows $(E_0/N_{n,0}(E_n))^{e_1} \cong (E_0N_{n,0}(E'_n)/N_{n,0}(E'_n))^{e_1}$. Let σ be any element of $\Delta = G(k/F)$ and α any element of E'_0 . We put $u_{\sigma} = \alpha^{\sigma-1}$. Then the definition of S, we have $u_{\sigma} \in E_0$. We denote by $\overline{\alpha}$ the coset $\alpha N_{n,0}(E'_n)$ in the factor group $E'_0/N_{n,0}(E'_n)$. Then we have

$$\overline{\alpha}^{e_1} = \overline{\alpha}^{e_1^2} = (\prod_{\sigma \in \mathcal{A}} (\overline{\alpha} \overline{u}_{\sigma-1})^{\chi(\sigma)})^{e_1/\delta} = (\prod_{\sigma \in \mathcal{A}} \overline{\alpha}^{\chi(\sigma)})^{e_1/\delta} (\prod_{\sigma \in \mathcal{A}} \overline{u}_{\sigma-1}^{\chi(\sigma)}) = (\prod_{\sigma \in \mathcal{A}} \overline{u}_{\sigma-1}^{\chi(\sigma)})^{e_1/\delta} \in (E_0 N_{n,0}(E'_n)/N_{n,0}(E'_n))^{e_1},$$

where χ is the Teichmüller character. This shows $(E_0 N_{n,0}(E'_n)/N_{n,0}(E'_n))^{e_1} = (E'_0/N_{n,0}(E'_n))^{e_1}$. In a similar way, we can prove (2).

Lemma 2. Let $\operatorname{rank}_p(E_0/E_0^p)^{e_1}$ denote the dimension of the vector space $(E_0/E_0^p)^{e_1}$ over the prime field F_p of characteristic p. Then we have $\operatorname{rank}_p(E_0/E_0^p)^{e_1}=2$.

Proof. Let η be a Minkowski unit of k with $N_{k/F}(\eta) = 1$. Let H_0 be a subgroup of E_0 generated by $\{\eta^{\sigma} | \sigma \in \Delta = G(k/F)\}$ and W the group of all roots of 1 in k. We put $\overline{E}_0 = E_0/W$ and $\overline{H}_0 = H_0W/W$. Then by the definition of Minkowski unit, we have $\overline{H}_0 \cong \mathbb{Z}[\Delta]/\mathbb{Z}[\Delta] \sum_{\sigma \in \Delta} \sigma$, where $\mathbb{Z}[\Delta]$ is the group ring of Δ over \mathbb{Z} . Since $\overline{H}_0/\overline{H}_0^p \cong F_p[\Delta]/F_p[\Delta] \sum_{\sigma \in \Delta} \sigma$, we have $(\overline{H}_0/\overline{H}_0^p)^{e_i} \neq 1$ for $i \neq 0 \pmod{\delta}$, where δ is the order of Δ . Hence we have $(\overline{H}_0/\overline{E}_0^{p^n})^{e_i} \neq 1$ for a sufficiently large n and for $i \neq 0 \pmod{\delta}$. Since $((\overline{E}_0/\overline{E}_0^{p^n}))/(\overline{E}_0/\overline{E}_0^{p^n})^{e_i} \cong (\overline{E}_0/\overline{E}_0^p)^{e_i} = 2$.

Lemma 3. Let L be a cyclic extension of F with [L:F]=p. If there exists an element b of E'_0 with $Lk=k(\sqrt[p]{b})$, then $bE'_0 \in (E'_0/E'_0)^{e_1}$.

Proof. Let ρ be a generator of G(Lk/k) with $\sqrt[p]{b}{\rho} = \sqrt[p]{b} \zeta_1$ and τ an element of G(Lk/F) such that the restriction $\tau \mid k$ is a generator of G(k/F). Then there exists a rational integer t and an element u of E'_0 with $\sqrt[p]{b}{\tau} = \sqrt[p]{b}{t} u$. Since we have $\sqrt[p]{b}{\tau}^{\tau\rho\tau-1} = (\sqrt[p]{b}{t} u)^{\rho\tau-1} = (\sqrt[p]{b}{t} \zeta_1^t u)^{\tau-1} = \sqrt[p]{b}{(\zeta_1^{\tau-1})^t} = \sqrt[p]{b}{\zeta_1}$, we have $\zeta_1^{\tau} = \zeta_1^t$. Hence we have $t \equiv \chi(\tau) \pmod{p}$. This shows $(bE'_0^p)^{\tau} = (bE'_0^{(p)})^{\chi(\tau)}$. Namely, we have $bE'_0^{p} \in (E'_0/E'_0)^{e_1}$.

Kersten and Michaliček obtained the following (cf. [4, p. 373]):

Lemma 4. Let $k_{\infty} = \bigcup_{n=0}^{\infty} k_n$ be the cyclotomic Z_p -extension of k. We suppose that there exists a Z_p -extension $K = \bigcup_{n=0}^{\infty} K_n$ of k with $K \cap k_{\infty} = k$ such that K/k has a normal S-basis. Then there exists an element b_n of

 E'_0 with $K_1 = k(\sqrt[p]{b_n})$ such that there exists an element v_n of E'_n with $N_{n,0}(v_n) = b_n$ for every natural number n.

We have furthermore

Lemma 5. If there exists a \mathbb{Z}_p -extension K of F with $K \cap F_{\infty} = F$ such that K/F has a normal S_0 -basis, then $(E_0/N_{n,0}(E_n))^{e_1} = 1$ for every natural number n.

Proof. We notice that $Kk \cap k_{\infty} = k$ follows from $K \cap F_{\infty} = F$ and that Kk/k has a normal S-basis. It follows from Lemma 1, Lemma 3 and Lemma 4 that there exists an element b_n of E_0 with $b_n E_0^p \in (E_0/E_0^p)^{\epsilon_1}$ and with $K_1k = k(\sqrt[p]{b_n})$ such that there exists an element v_n of E_n with $N_{n,0}(v_n) = b_n$ for every natural number n. Since $(E_0/E_0^p)^{\epsilon_1} = \langle b_n E_0^p, \zeta_1 E_0^p \rangle$ from Lemma 2, $(E_0/N_{n,0}(E_n))^{\epsilon_1} = \langle b_n N_{n,0}(E_n), \zeta_1 N_{n,0}(E_n) \rangle = 1$ for every natural number n.

Proof of Theorem. Let A_n be the *p*-primary part of the ideal class group of k_n , Ker $(A_0 \rightarrow A_n)$ the kernel of a natural embedding of A_0 in A_n and $H^i(G(k_n/k), E_n)$ the cohomology group of the $G(k_n/k)$ -module E_n . Then we have an injective morphism

 $1 \longrightarrow \operatorname{Ker}(A_0 \longrightarrow A_n) \longrightarrow H^1(G(k_n/k), E_n) \quad (cf. [3, p. 267]).$ Since \varDelta is canonically isomorphic to $G(k_{\infty}/F_{\infty})$, we may consider $H^i(G(k_n/k), E_n)$ as \varDelta -module in a natural way. Then it follows from Herbrand's lemma that the order of $H^0(G(k_n/k), E_n)^{e_1}$ is equal to the order of $H^1(G(k_n/k), E_n)^{e_1}$ (cf. [5, p. 13]). Now, we suppose that there exists a Z_p -extension K of F with $K \cap F_{\infty} = F$ such that K/F has a normal S_0 -basis. Then $H^0(G(k_n/k), E_n)^{e_1} = (E_0/N_{n,0}(E_n))^{e_1} = 1$ follows from Lemma 5. Hence we have $H^1(G(k_n/k), E_n)^{e_1} = 1$. This shows $\operatorname{Ker}(A_0 \to A_n)^{e_1} = 1$ (cf. [1]). Hence our theorem follows from [2, Proposition 2] and [6, Theorem 7. 15].

References

- V. Fleckinger and T. Nguyen Quang Do: Bases normales unités et conjecture faible de Leopoldt. Manus. Math., 71, 183-195 (1991).
- [2] R. Greenberg: On Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
- [3] K. Iwasawa: On Z_t -extensions of algebraic number fields. Ann. of Math., 98, 246-326 (1973).
- [4] I. Kersten and J. Michaliček: On Vandiver's conjecture and Z_p -extensions of $Q(\zeta_{p^n})$. J. Number Theory, **32**, 371–386 (1989).
- [5] J. Neukirch: Class Field Theory. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986).
- [6] L. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, Berlin, New York (1982).

No. 7]