61. A Note on Poincaré Sums of Galois Representations. II

By Takashi Ono

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1991)

Let k be a field of characteristic zero, K a finite Galois extension of k and χ the character of a k-representation ρ of the Galois group G = G(K/k). The subfield corresponding to Ker ρ is written K_{χ} because Ker $\rho = \text{Ker } \chi^* \stackrel{\text{def}}{=} \{s \in G ; \chi^*(s) = 1\}$ where we set $\chi^*(s) = \chi(s)/\chi(1)$. In [5], we proved (0.1) $K_{\chi} = k(P_{\chi})$ where (0.2) $P_{\chi} = \sum_{s \in G} \theta^s \chi(s)$ (a Poincaré sum)

and θ is a normal basis element for K/k, chosen once for all.

If, in particular, K/k is a cyclic Kummer extension of degree n with $G = \langle s \rangle$, $\rho(s) = \zeta$, this being a primitive *n*th root of 1 in k, then $K = k(P_{\chi})$ as well as $P_{\chi}^{n} \in k$, a property peculiar to this K/k. Usually P_{χ} is referred to as the Lagrange resolvent and satisfies

$$(0.3) P_{\chi}^{s} = \chi(s^{-1})P_{\chi}$$

Therefore, it is natural to seek a generalization of (0.3) for any Galois extension K/k such that G splits over k^{1} .

In this paper, we shall prove among others that (0.4) $P_{\chi}^{a(s)} = \chi^*(s^{-1})P_{\chi}, \quad s \in G, \quad \chi \in \operatorname{Irr}(G)^{2}$ where

(0.5)
$$a(s) = \frac{1}{n} \sum_{i \in G} tst^{-i}, \quad n = [K:k] = |G|.$$

This a(s) is an element of the center $k[G]_0$ of the group ring k[G] and is viewed as an endomorphism of the vector space K over k. When k is a number field, (0.4) implies that

(0.6)
$$P_{\chi}^{\alpha_{K/k}(\mathfrak{p})} = \chi^* \left(\left[\frac{K/k}{\mathfrak{P}} \right]^{-1} \right) P_{\chi}, \qquad \mathfrak{P} \mid \mathfrak{p},$$

where $\alpha_{K/k}$ is the generalized Artin map introduced and studied in the series of papers [2], [3], [4].

1. Operator a(s). Let K/k be a finite Galois extension of fields of characteristic zero with G = G(K/k). Fix once for all a normal basis element θ for K/k. Assume that k is a splitting field for G. We begin with a description of the following diagram

¹⁾ By a theorem of Brauer ([1], p. 86, (16.3)), this is always the case if k contains a primitipe *m*th root of 1 where *m* is the exponent of *G*.

²⁾ Irr (G) denotes the set of all absolutely irreducible characters of G.

The map φ is an isomorphism of k[G]-modules given by (1.2) $\varphi(\sum_{s\in G} a_s \theta^s) = \sum_{s\in G} a_s s, \quad a_s \in k.$

The map ρ is an isomorphism of k-algebras given by $\rho = (\rho_{\nu})$ where $\rho_{\nu}, 1 \leq \nu \leq r$, are the distinct irreducible representations of k[G] with $n_{\nu} = \deg \rho_{\nu} = \chi_{\nu}(1)$. The maps i, j are natural embeddings of centers of k-algebras k[G], $\bigoplus_{\nu=1}^{r} M_{n_{\nu}}(k)$, respectively. The map ω is an isomorphism of commutative k-algebras given by

(1.3)
$$\omega = (\omega_{\nu}), \quad \omega_{\nu}(z) = \frac{1}{n_{\nu}} \chi_{\nu}(z), \quad \chi_{\nu} \in \operatorname{Irr} (G).$$

One verifies that $\rho i = j\omega$. If $\{s_i\}$, $1 \leq i \leq r$, is a complete set of representatives of conjugacy classes of G, we put $\gamma_i = a(s_i)$ and denote by M(G) the multiplicative monoid generated by γ_i 's in $k[G]_0$. Via φ , we view K as a $k[G]_0$ -module. For example, we have

(1.4)
$$x^{a(s)} = \frac{1}{n} \sum_{t \in G} x^{tst^{-1}}, \quad x \in K, \quad s \in G.$$

From (0.5), (1.3), it follows that

(1.5)
$$\omega(a(s)) = (\chi^*_{\nu}(s)), \qquad 1 \leq \nu \leq r.$$

For each $\chi \in Irr(G)$, we set

(1.6) $E_{\chi} = \{ x \in K ; \ x^{a(s)} = \chi^{*}(s^{-1})x \text{ for all } s \in G \}.$

(1.7) Theorem. E_{χ} , $\chi \in Irr(G)$, are $k[G]_0$ -submodules of K and we have $K = \bigoplus_{\chi} E_{\chi}$, dim $E_{\chi} = \chi(1)^2$.

Proof. For each
$$\chi \in Irr(G)$$
, set
(1.8) $S_{\chi} = \rho \varphi(E_{\chi})$

In view of (1.5), (1.6), we have

(1.9)
$$S_{\chi} = \left\{ X = (X_{\nu}) \in \bigoplus_{\nu=1}^{r} M_{n_{\nu}}(k) ; \chi_{\nu}^{*}(s) X_{\nu} = \chi^{*}(s^{-1}) X_{\nu}, \forall s \in G \right\}.$$

For $\chi \in \operatorname{Irr}(G)$, denote by χ^c the irreducible character given by $\chi^c(s) = \chi(s^{-1})^{.3}$. For μ , $1 \leq \mu \leq r$, define μ^c by the equality $\chi_{\mu^c} = (\chi_{\mu})^c$. Call p_{λ} , $1 \leq \lambda \leq r$, the projection $\bigoplus_{\nu=1}^r M_{n_{\nu}}(k) \to M_{n_{\lambda}}(k)$. Then, (1.9) becomes (1.10) $S_{\chi_{\mu}} = \{X = (\chi_{\nu}); X_{\nu}^*(s)X_{\nu} = \chi_{\mu^c}^*(s)X_{\nu} \text{ for all } s \in G\}$

and we get

$$p_{\nu}(S_{\chi_{\mu}}) = \begin{cases} M_{n_{\mu}}(k) & \text{if } \nu = \mu^{c}, \\ 0 & \text{if } \nu \neq \mu^{c}, \end{cases}$$

from which our assertion follows,

(1.11) Corollary. The characteristic polynomial of $a(s) \in \text{End}_k(K)$ is

³⁾ If $\chi = \operatorname{tr} \rho$, then $\chi^c = \operatorname{tr} \rho^c$ with $\rho^c(s) = {}^t \rho(s)^{-1}$.

No. 7]

Q.E.D.

^{*)} Note that the set $\{\chi_{\nu}\}$ is independent over k.

given by

$$X(a(s); T) = \prod_{\chi \in \mathrm{Irr}(G)} (T - \chi^*(s^{-1}))^{\chi(1)^s}.$$

(1.12) Theorem. For each $\chi \in Irr(G)$, we have $P_{\chi} \in E_{\chi}$, i.e., the Poincaré sum P_x is a simultaneous eigen-vector for all operators in the commutative monoid M(G).

Proof. Let ρ_{ν} be an irreducible k-representation of G such that tr $\rho_{\nu} =$ χ_{ν} and let $\rho_{\nu}(t) = (\rho_{\nu,ij}(t)) \in M_{n\nu}(k)$. By the orthogonality relation, we have $\sum_{\lambda \in \mathcal{C}} \rho_{\mu,ij}(t) \rho_{\nu,kl}(t) = 0 \quad \text{if } \mu^c \neq \nu,$ (1.13)

or

(1.14)
$$\sum_{\iota\in G} \rho_{\mu,\iota j}(t)\rho_{\nu}(t) = 0, \quad 1 \leq i, j \leq n_{\mu}, \quad \text{if } \mu^{c} \neq \nu.$$

Summing up (1.14) for (i, j) with i=j, we get

(1.15) $\sum_{\substack{t \in G \\ t \in G}} \chi_{\mu}(t) \rho_{\nu}(t) = 0 \quad \text{if } \mu^{c} \neq \nu.$ Therefore, we have $Q_{\chi_{\mu}} = \rho \varphi(P_{\chi_{\mu}}) = \rho \varphi(\sum_{s \in G} \chi_{\mu}(s) \theta^{s}) = \rho(\sum_{s \in G} \chi_{\mu}(s) s) = (X_{\nu}) \in \mathbb{C}$ $\bigoplus_{\nu=1}^{r} M_{n_{\nu}}(k)$ with

(1.16)
$$X_{\nu} = \sum_{t \in G} \chi_{\mu}(t) \rho_{\nu}(t) = 0 \quad \text{if } \mu^{c} \neq \nu.$$

On the other hand, if $\mu^c = \nu$, then we have (1.17) $\chi_{\nu}^{*}(s)X_{\nu} = \chi_{\mu}^{*}(s^{-1})X_{\nu}.$

From (1.16), (1.17), it follows that $Q_{\chi_{\mu}} \in S_{\chi_{\mu}}$ and hence $P_{\chi_{\mu}} \in E_{\chi_{\mu}}$, Q.E.D. 2. $a_{K/k}$. Let K/k be a finite Galois extension of number fields, S a finite set of finite primes of k containing all primes which ramify in Kand $I^+(S)$ the free commutative monoid generated by primes $p \notin S$. The map $\alpha_{K/k}$: $I^+(S) \to M(G)$ is a surjective monoid homomorphism given by (2.1) $\alpha_{K/k}(\mathfrak{p}) = a(F_{\mathfrak{p}}),$ \$p,

where $F_{\mathfrak{p}} = \left[\frac{K/k}{\mathfrak{R}}\right]$, the Frobenius automorphism of \mathfrak{P} . If we put, for $\chi \in Irr(G),$

(2.2)
$$(\chi, \alpha) = \prod_{\mathfrak{p}} \chi^*(F_{\mathfrak{p}}^{-1})^{e_{\mathfrak{p}}} \quad \text{for } \alpha = \prod_{\mathfrak{p}} \mathfrak{p}^{e_{\mathfrak{p}}} \in I^+(S),$$

then, by (1.12), (2.1), we have

(2.3)
$$P_{\chi}^{\alpha_{K/k}(\alpha)} = (\chi, \alpha) P_{\chi}, \quad \alpha \in I^{+}(S), \quad \chi \in Irr(G).$$

In other words, the Poincaré sum is a simultaneous eigen-vector for all operators $\alpha_{\kappa/k}(\mathfrak{a}), \mathfrak{a} \in I^+(S)$.

(2.4) Remark. We hope to come back to the study of eigen-values (2.2)sometime in the future.

References

- [1] Feit, W.: Characters of Finite Groups. Benjamin, New York, Amsterdam (1967).
- [2] Ono, T.: A note on the Artin map. Proc. Japan Acad., 65A, 304-306 (1989).
- [3] ——: A note on the Artin map. II. ibid., 66A, 132-136 (1990).
- [4] ——: A note on the Artin map. III. ibid., 67A, 79-81 (1991).
- [5] ——: A note on Poincaré sums of Galois representations. ibid., 67A, 145-147 (1991).