61. A Note on Poincaré Sums of Galois Representations. II

By Takashi Ono
Department of Mathematics, The Johns Hopkins University (Communicated by Shokichi Ifanaga, m. J. A., Sept. 12, 1991)

Let k be a field of characteristic zero, K a finite Galois extension of k and χ the character of a k-representation ρ of the Galois group $G=G(K / k)$. The subfield corresponding to $\operatorname{Ker} \rho$ is written K_{χ} because $\operatorname{Ker} \rho=\operatorname{Ker} \chi^{*}$ $\stackrel{\text { def }}{=}\left\{s \in G ; \chi^{*}(s)=1\right\}$ where we set $\chi^{*}(s)=\chi(s) / \chi(1)$. In [5], we proved

$$
\begin{equation*}
K_{x}=k\left(P_{\chi}\right) \tag{0.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\chi}=\sum_{s \in G} \theta^{s} \chi(s) \quad \text { (a Poincaré sum) } \tag{0.2}
\end{equation*}
$$

and θ is a normal basis element for K / k, chosen once for all.
If, in particular, K / k is a cyclic Kummer extension of degree n with $G=\langle s\rangle, \rho(s)=\zeta$, this being a primitive nth root of 1 in k, then $K=k\left(P_{x}\right)$ as well as $P_{x}^{n} \in k$, a property peculiar to this K / k. Usually P_{x} is referred to as the Lagrange resolvent and satisfies

$$
\begin{equation*}
P_{\chi}^{s}=\chi\left(s^{-1}\right) P_{\chi} . \tag{0.3}
\end{equation*}
$$

Therefore, it is natural to seek a generalization of (0.3) for any Galois extension K / k such that G splits over $k^{1)}$.

In this paper, we shall prove among others that

$$
\begin{equation*}
P_{\chi}^{a(s)}=\chi^{*}\left(s^{-1}\right) P_{\chi}, \quad s \in G, \quad \chi \in \operatorname{Irr}(G)^{2)} \tag{0.4}
\end{equation*}
$$

where

$$
\begin{equation*}
a(s)=\frac{1}{n} \sum_{t \in G} t s t^{-1}, \quad n=[K: k]=|G| . \tag{0.5}
\end{equation*}
$$

This $a(s)$ is an element of the center $k[G]_{0}$ of the group ring $k[G]$ and is viewed as an endomorphism of the vector space K over k. When k is a number field, (0.4) implies that

$$
\begin{equation*}
P_{x}^{\alpha_{K / k}(\mathcal{p})}=\chi^{*}\left(\left[\frac{K / k}{\mathfrak{P}}\right]^{-1}\right) P_{x}, \quad \mathfrak{B} \mid \mathfrak{p}, \tag{0.6}
\end{equation*}
$$

where $\alpha_{K / k}$ is the generalized Artin map introduced and studied in the series of papers [2], [3], [4].

1. Operator $a(s)$. Let K / k be a finite Galois extension of fields of characteristic zero with $G=G(K / k)$. Fix once for all a normal basis element θ for K / k. Assume that k is a splitting field for G. We begin with a description of the following diagram

[^0]

The $\operatorname{map} \varphi$ is an isomorphism of $k[G]$-modules given by

$$
\begin{equation*}
\varphi\left(\sum_{s \in G} a_{s} \theta^{s}\right)=\sum_{s \in G} a_{s} s, \quad a_{s} \in k \tag{1.2}
\end{equation*}
$$

The map ρ is an isomorphism of k-algebras given by $\rho=\left(\rho_{\nu}\right)$ where $\rho_{\nu}, 1 \leqq \nu$ $\leqq r$, are the distinct irreducible representations of $k[G]$ with $n_{\nu}=\operatorname{deg} \rho_{\nu}=$ $\chi_{\nu}(1)$. The maps i, j are natural embeddings of centers of k-algebras $k[G]$, $\oplus_{\nu=1}^{r} M_{n_{\nu}}(k)$, respectively. The map ω is an isomorphism of commutative k-algebras given by

$$
\begin{equation*}
\omega=\left(\omega_{\nu}\right), \quad \omega_{\nu}(z)=\frac{1}{n_{\nu}} \chi_{\nu}(z), \quad \chi_{\nu} \in \operatorname{Irr}(G) \tag{1.3}
\end{equation*}
$$

One verifies that $\rho i=j \omega$. If $\left\{s_{i}\right\}, 1 \leqq i \leqq r$, is a complete set of representatives of conjugacy classes of G, we put $\gamma_{i}=a\left(s_{i}\right)$ and denote by $M(G)$ the multiplicative monoid generated by γ_{i} 's in $k[G]_{0}$. Via φ, we view K as a $k[G]_{0}$-module. For example, we have

$$
\begin{equation*}
x^{a(s)}=\frac{1}{n} \sum_{t \in G} x^{t s t-1}, \quad x \in K, \quad s \in G . \tag{1.4}
\end{equation*}
$$

From (0.5), (1.3), it follows that

$$
\begin{equation*}
\omega(a(s))=\left(\chi_{\nu}^{*}(s)\right), \quad 1 \leqq \nu \leqq r . \tag{1.5}
\end{equation*}
$$

For each $\chi \in \operatorname{Irr}(G)$, we set
(1.6) $\quad E_{x}=\left\{x \in K ; x^{a(s)}=\chi^{*}\left(s^{-1}\right) x\right.$ for all $\left.s \in G\right\}$.
(1.7) Theorem. $E_{x}, \chi \in \operatorname{Irr}(G)$, are $k[G]_{0}$-submodules of K and we have $K=\oplus_{x} E_{\chi}, \operatorname{dim} E_{\chi}=\chi(1)^{2}$.

Proof. For each $\chi \in \operatorname{Irr}(G)$, set
(1.8)

$$
S_{x}=\rho \varphi\left(E_{x}\right) .
$$

In view of (1.5), (1.6), we have

$$
\begin{equation*}
S_{\chi}=\left\{X=\left(X_{\nu}\right) \in \underset{\nu=1}{\underset{\oplus}{\oplus}} M_{n_{\nu}}(k) ; \chi_{\nu}^{*}(s) X_{\nu}=\chi^{*}\left(s^{-1}\right) X_{\nu}, \forall s \in G\right\} \tag{1.9}
\end{equation*}
$$

For $\chi \in \operatorname{Irr}(G)$, denote by χ^{c} the irreducible character given by $\chi^{c}(s)=\chi\left(s^{-1}\right) .{ }^{3)}$ For $\mu, 1 \leqq \mu \leqq r$, define μ^{c} by the equality $\chi_{\mu^{c}}=\left(\chi_{\mu}\right)^{c}$. Call $p_{\lambda}, 1 \leqq \lambda \leqq r$, the projection $\oplus_{\nu=1}^{r} M_{n_{\nu}}(k) \rightarrow M_{n_{\lambda}}(k)$. Then, (1.9) becomes

$$
\begin{equation*}
S_{x_{\mu}}=\left\{X=\left(X_{\nu}\right) ; X_{\nu}^{*}(s) X_{\nu}=\chi_{\mu^{c}}^{*}(s) X_{\nu} \text { for all } s \in G\right\} \tag{1.10}
\end{equation*}
$$

and we get

$$
p_{\nu}\left(S_{x_{\mu}}\right)=\left\{\begin{array}{cl}
M_{n_{\mu}}(k) & \text { if } \nu=\mu^{c}, \\
0 & \text { if } \left.\nu \neq \mu^{c}, 4\right)
\end{array}\right.
$$

from which our assertion follows,
Q.E.D.
(1.11) Corollary. The characteristic polynomial of $a(s) \in \operatorname{End}_{k}(K)$ is
${ }^{3)}$ If $\chi=\operatorname{tr} \rho$, then $\chi^{c}=\operatorname{tr} \rho^{c}$ with $\rho^{c}(s)={ }^{t} \rho(s)^{-1}$.
4) Note that the set $\left\{\chi_{\nu}\right\}$ is independent over k.
given by

$$
X(a(s) ; T)=\prod_{\chi \in \operatorname{Trr}(G)}\left(T-\chi^{*}\left(s^{-1}\right)\right)^{\chi(1)^{2}} .
$$

(1.12) Theorem. For each $\chi \in \operatorname{Irr}(G)$, we have $P_{x} \in E_{\chi}$, i.e., the Poincaré sum P_{x} is a simultaneous eigen-vector for all operators in the commutative monoid $M(G)$.

Proof. Let ρ_{ν} be an irreducible k-representation of G such that $\operatorname{tr} \rho_{\nu}=$ χ_{ν} and let $\rho_{\nu}(t)=\left(\rho_{\nu, i j}(t)\right) \in M_{n_{\nu}}(k)$. By the orthogonality relation, we have

$$
\begin{equation*}
\sum_{t \in G} \rho_{\mu, i j}(t) \rho_{\nu, k l}(t)=0 \quad \text { if } \mu^{c} \neq \nu \tag{1.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{t \in G} \rho_{\mu, i j}(t) \rho_{\nu}(t)=0, \quad 1 \leqq i, j \leqq n_{\mu}, \quad \text { if } \mu^{c} \neq \nu . \tag{1.14}
\end{equation*}
$$

Summing up (1.14) for (i, j) with $i=j$, we get

$$
\begin{equation*}
\sum_{t \in G} \chi_{\mu}(t) \rho_{\nu}(t)=0 \quad \text { if } \mu^{c} \neq \nu \tag{1.15}
\end{equation*}
$$

Therefore, we have $Q_{x_{\mu}}=\rho \varphi\left(P_{x_{\mu}}\right)=\rho \varphi\left(\sum_{s \in G} \chi_{\mu}(s) \theta^{s}\right)=\rho\left(\sum_{s \in G} \chi_{\mu}(s) s\right)=\left(X_{\nu}\right) \in$ $\oplus_{\nu=1}^{r} M_{n_{\nu}}(k)$ with

$$
\begin{equation*}
X_{\nu}=\sum_{t \in G} \chi_{\mu}(t) \rho_{\nu}(t)=0 \quad \text { if } \mu^{c} \neq \nu \tag{1.16}
\end{equation*}
$$

On the other hand, if $\mu^{c}=\nu$, then we have

$$
\begin{equation*}
\chi_{\nu}^{*}(s) X_{\nu}=\chi_{\mu}^{*}\left(s^{-1}\right) X_{\nu} . \tag{1.17}
\end{equation*}
$$

From (1.16), (1.17), it follows that $Q_{\chi_{\mu}} \in S_{\chi_{\mu}}$ and hence $P_{\chi_{\mu}} \in E_{\chi_{\mu}}$, Q.E.D.
2. $\alpha_{K / k}$. Let K / k be a finite Galois extension of number fields, S a finite set of fiinite primes of k containing all primes which ramify in K and $I^{+}(S)$ the free commutative monoid generated by primes $\mathfrak{p} \notin S$. The $\operatorname{map} \alpha_{K / k}: I^{+}(S) \rightarrow M(G)$ is a surjective monoid homomorphism given by

$$
(2.1) \quad \alpha_{K / k}(\mathfrak{p})=a\left(F_{\mathfrak{p}}\right), \quad \mathfrak{P} \mid \mathfrak{p},
$$

where $F_{\mathfrak{p}}=\left[\frac{K / k}{\mathfrak{P}}\right]$, the Frobenius automorphism of \mathfrak{P}. If we put, for $\chi \in \operatorname{Irr}(G)$,

$$
\begin{equation*}
(\chi, \mathfrak{a})=\prod_{\mathfrak{p}} \chi^{*}\left(F_{\mathfrak{p}}^{-1}\right)^{e_{p}} \quad \text { for } \mathfrak{a}=\prod_{p} \mathfrak{p}_{\mathfrak{p}} \in I^{+}(S) \tag{2.2}
\end{equation*}
$$

then, by (1.12), (2.1), we have

$$
\begin{equation*}
P_{x}^{\alpha_{K} / / k^{(a)}}=(\chi, \mathfrak{a}) P_{\chi}, \quad \mathfrak{a} \in I^{+}(S), \quad \chi \in \operatorname{Irr}(G) . \tag{2.3}
\end{equation*}
$$

In other words, the Poincaré sum is a simultaneous eigen-vector for all operators $\alpha_{K / k}(\mathfrak{a}), \mathfrak{a} \in I^{+}(S)$.
(2.4) Remark. We hope to come back to the study of eigen-values (2.2) sometime in the future.

References

[1] Feit, W.: Characters of Finite Groups. Benjamin, New York, Amsterdam (1967).
[2] Ono, T.: A note on the Artin map. Proc. Japan Acad., 65A, 304-306 (1989).
[3] --: A note on the Artin map. II. ibid., 66A, 132-136 (1990).
[4] --: A note on the Artin map. III. ibid., 67A, 79-81 (1991).
[5] --: A note on Poincaré sums of Galois representations. ibid., 67A, 145-147 (1991).

[^0]: ${ }^{1)}$ By a theorem of Brauer ([1], p. 86, (16.3)), this is always the case if k contains a primitipe m th root of 1 where m is the exponent of G.
 ${ }^{2)} \operatorname{Irr}(G)$ denotes the set of all absolutely irreducible characters of G.

