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In this article, we mean by a ring a commutative ring with identity.
We are giving a new proof of the following theorem, which is known as the
theorem of Eakin-Nagata ([2], [3]).

Theorem. Let A be a subring of a noetherian ring R. If R is a finite
A-module, then A is noetherian.

To begin with, we recall the following theorem of Cohen [1].
Theorem of Cohen. A ring A is noetherian if (and only if) every

prime ideal of A has a finite basis.

Proof. Assume the contrary, and let F be the set of ideals of A which
have no finite bases. By Zorn’s lemma, F has a maximal member, say, I.
By our assumption, I is not a prime ideal, and there are elements b, c of A
which are not in I and such that bc e I. By the maximality of I, ideals
I’b, I+bA have finite bases, say, el,..., e and b, f1,.. ",fn with f, e I.
Then I is generated by fl, ., fn, be, ., ben, a contradiction.

Now we prove the theorem of Eakin-Nagata. As is easily seen, it
suffices to prove it under

(additional assumption 1) R=A[b] with b e R.
By induction on the largeness of ideals of R, we may assume
(additional assumption 2) If J is a non-zero ideal of R, then A/(J ( A)

is noetherian.
(1) Assume first that A is an integral domain. Then, we may as-

sume that R is an integral domain. Then, there is an element c of A such
that (i) A[cb] is a free A-module and (ii) the field of fractions of A[cb] coin-
cides with that of R. If we see that A[cb] is noetherian, then we see easily
that A is noetherian, because A[cb] is a free A-module. Thus we may

assume that the field fractions of A coinsides with that of R. Then, there
is a non-zero element d of A such that dR_A. By the theorem of Cohen,
we have only to show that an arbitrary prime ideal P (=/={0}) of A has a
finite basis. We may choose d from elements of P. A/dR is noetherian by
our assumption, and P modulo dR has a finite basis. Since R is a finite
A-module, so is dR, too. Thus P has a finite basis, and A is noetherian.

( 2 ) Assume now that A contains a zero-divisor c (=/=0). Let P be an
arbitrary prime i,deal of A. We may choose c from elements of P. Consider
cR as an A-module. This is really A/(O’cA)-module, and O’cA--(O’cR)
A. Therefore cR is a noetherian module by our assumption, and its

submodule cR A has a finite basis. Since A/(cR A) is noetherian by our
assumption, we see that P has a finite basis. Q.E.D
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