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57. A Reduction of Hamiltonian Systems with Multi-time
Variables Along a Regular Singularity

By Hironobu KIMURA,*) Atusi MATUMIYA,**)
and Kyoichi TAKANO**)

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1991)

1. Introduction. Let (¢, 2)=(,- -, ty, 21, -+, Z,,) be the coordinates

of C***¥ and let D(r, p) be an unbounded domian in C***¥ defined by

D(’i", P) :={(ty w) g Cin+y H |tl<"’, |w1mn+ll’ |t1xn+1|) |xt|<P, (?,#n-l-l)}
where |a|:=max{a,|, ---,|a,]} for a=(a,, ---,a,) € C*. The projection
image to D(r, p) to the t-space is a polydisk with center 0, which we denote
by 4(r):={t e C¥; |t|<r}. The domain D(r, p) is a neighbourhood of (0, 0).

Consider a completely integrable Hamiltonian system of the form:
(1) tdw=JH, J=( ? ‘I)) 1<i<N
with Hamiltonians H, - . ., HY holomorphic in D(r, p), where 9,=0/dt, and
Hi:='(H:, ..., H: ) is the gradient vector of H* in . The system (1) is
said to have a singularity of regular type along a hyperplane S:={te 4(r);
t,=0}, if H'/t, 2<i<N) are holomorphic in D(r, o) and if H' does not have
t, as a factor.

The purpose of this note is to obtain a reduction theorem for the
system (1) with a singularity of regular type along S (Theorem 1). This
result will be applied to the Hamiltonian system .4(, (see §2) which is a
generalization of the sixth Painlevé system [7] to a system of partial
differential equations obtained by a monodromy preserving deformation.

We say that a symplectic transformation ¢ : (¢, 2)— (¢, X) is #-symplectic
if ¢ is holomorphic on D(r, p) and if D(+/, p’) C¢(D(r, p)) for some positive
r" and p’.

We define a class of Hamiltonians studied in this note. Consider a
Hamiltonian system (1) with a Hamiltonian H=(H", - - -, H). We expand
H!in z as

Ht, ) ="Hi(t, 0+ L 'oH(t Ot 3 hilassre

a+er+en4+120
later+en+11238

for 1<i{<N, where H:, denotes the Hessian of H' with respect to x and

xa+ e1+en+1=x¢1u+1 e x:”x;ﬁ"i”‘l e wgﬁn.
We assume the following four conditions:

(A-1) H', Ht, ---,H"|ty are bounded holomorphic functions in D(r, p).
(A-2) H! satisfies
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where * stands for a function of t'=(¢,, - - -, ty).
(A-3) e C\(—o0,0]UI1, o).
(A-9) h®))],==0if o,=a,,, and a ¢ Z(e,+e,,,).
The condition (A-1) implies that the singular locus of the system (1) is
S=4(r)N{t,=0}. Set
Ay, i={H=(H", -- -, H¥); H satisfies (4—1), ---, (A—4)}.

Then our main theorem is

Theorem 1. For a completely integrable Hamiltonian system (1) with
He ,,, there exists a #-symplectic transformation (t, x)—(t, X) given by
r=0(t, X) € O% 4, 1", p'>0, such that it takes the system (1) into
(2) t,0,X=JH: 4, 1<i<N
with the Hamiltonian H.,

Hio =77X1Xn+1 +2;1 hin(e1+en+1)(0) (Xan +1)m“,

H*=...=HY=0.

Remark that we can obtain the Hamiltonian H., from a given Hamil-
tonian He ,,, by picking up the terms with powers a=m(e +e,,,) and
by setting ¢=0. Moreover, by solving the system (2), we can obtain a
general solution of the system (1) through the #-symplectic transformation.
In fact,

Corollary 2. A Hamiltonian system (1) with He J,,, has a 2n-para-
meter family of solutions of the form

2B =p(t, X)),
where ¢(t, X) is the transformation given in Theorem 1 and
X(t)=(clt¥+h(clcn+1), Coy ***5 Cpy Cn+1tl_’y—-n(clcm‘l), Cpioy Czn),
h(z)=mzzll(m+1) Ponersensny(0) 2™,

Ciy -+ +y €y, Deing complex constants.

2. The Hamiltonian system .%,. The system 4(, is a completely
integrable system of exterior differential 1-forms

J
(Di:dqi'— Z aaH dtj-——"'o,
1<j<n
I, o A<i<n).
wn+i=dpt+ Z dtj=0,
1575 04,

The Hamiltonians H* are polynomials in (g, p) with coefficients rational in
t=(t, ---,t,) of the form

i 1 E _ Fi(t )
T =D et O DL 2 Fill Pt e
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with E'.(¢, @), Fi(t, @) € C(£)[q] such that
Ei\.=E{,=E', Fi:=F{, 1<i,j<n.

Explicitly,
q:9,4: if 4, 7, k are distinct,
E§k= QzQJ(QJ—Rn) if i£j=k,
Qt(Qz_l)(Qi_tz)—lsasz:_:W‘ T.0.9. ifi=j=k,
05— q (@ —1)+0,,.9,(q,—t)+0,(q,— D (g, —1t)
F;: +1$k2:k*. {0kqt(qi—Rik)_ﬁiT'quk} if i=j,
« > 49k—I)thF“atRqu—ﬁjRu‘h if <7,
1<k<n+2
where
PR S \ U
4 1<izn+e
RU: tt(tj—]-) , T“= ti(ti—l)
tj—'ti ti"‘tj
and é,, ---,0,,, are complex constants.

Let V~C"** be the space of parameters 6:=(,, - - -,0,.,) of 4,, and
let 9(,(6) be the system 9/, with a parameter e V. For a birational
transformation 7': (q, p, t)—(q*, p*, t*), we denote by T - 4,(0) the system

(T-H*w,=0, 1<i<2n.
A symmetry of 9, is a pair ¢:=(T,1) of a birational transformation
T: (g, p, )—(g*, p*, t*) and an affine transformation I: V—V such that
T - 9,0 =9(,A10)) for all e V. For symmetries ¢=(T, ) and ¢'=(T",1),
the product and the inverse are defined by ¢-0":=(T o T’,l0ol) and ¢7':=
(T-1, 1Y), respectively.

Then we have

Proposition 3. There is a group of symmetries G of 9, which is
isomorphic to the symmetric group S,.; on n+3 elements.

As to the explicit form of generators of G, see [5].

Consider the system .4, on the space (P)"xC™3(t, ¢q,p), then the
singular locus S of 9(, is

S= U S Sii={te P ;t,=ty,

1<i, j<n+3
where ¢,,,=0, ¢t,,,=1and ¢,,,=c. Set

S°:=H Sfj, S%!:S“\ U (S'Ljnskl)!

(s 1) # (4, §)
and S,;,,=S\S°. The hyperplanes S,, in (P)" are irreducible components

of S and S° is the set of its smooth points. Each element ¢=(T,D) e G
induces a birational transformation t—t* of (P)". If there is no fear of
confusion, we denote the birational transformation t—t* also by T. We
investigate how the group G acts on the singular locus S.

Proposition 4. Let ¢=(T, ) be an element of G.

(a) T maps S into itself.

(b) If T(S?)cS°, T is biholomorphic on S;;.
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(c) For any S7;, there is an element of G which induces a biholo-
morphic map from Si,,, to S7;.

By virtue of this proposition we have only to study the solutions of
9, along Sy, in order to study those along S°.

3. Restriction of 4, (8) to S7,... In this section we show that the
restriction of 4, to X, (see Proposition 6) is %,.,., We make use of this
fact when we apply Theorem 1 to 4,(f). Consider, in general, a com-
pletely integrable Pfaffian system
(3) t,0,2=F"(t, x), 1<i<N
with independent variables t=(t,, - -+, ty) and unknowns z='(x, - - -, Z,).
Assume that

Fler/tz’ ot "FN/tNe 0%‘}
where U={(, ®); |t|<7,|®|<p}. Then the system (3) has a singularity
along the hyperplane S:={te 4(r); t,=0}. We want to find “a Pfaffian
system obtained by the restriction of the system (3) to its singular locus
S”. To this end, suppose that there is a solution of (3) of the form

r=a(t)= go a,(t)tr,

holomorphic at t=0, where t'=(t,, - - -, ty). Since lim,,_, @ (t)=d,(t"), d,(t")
must satisfy the equations
(4) F'(0, ¢, x)=0,
(5) t,0,x=F*0,t, x), 2<i<N.
The system (5) with (4) is called the restriction of (3) to its singular locus
S. Put X={0,t,2x)eU; F'(0,t,2)=0}. For the restriction (4) and (5),
Wwe can prove

Proposition 5. (a) If the system (3) is completely integrable, so is
the system (5).

() Let z(t) be o solution of the system (5) satisfying (0, t;, x(ty) € 2
for somet). Then (0,1, x(t)) e X as long as x(t) is defined.

Now we study the restriction of the system .4,(6) to a singular locus
SP..1- Note that the Hamiltonian H' has a simple pole along S;,., and
H?, ..., H" are holomorphic there. Set

L':=t,H'|,., L':=H',., 2<i<n),
and define the variety 2 C* for 4{,(6) by
Y={0,t,q,peC"; L,,=L,, =0 A<i<n)}.

Proposition 6. For the system 9(,(6) with 1—6,—0, ., 6 - - -, 0,0,

the algebraic variety 2 is decomposed into irreducible components as
2 =20 U U Zz,

1<igan
where
2,={0,t,9,p) e C"; ¢,=0, A—06,—6,.,)p:=S(q, p)}
with
S= 2 @p) (@) — 2 6P — 2, (00— 0D+ £,y
Jrk#1 k+1 k+1
0=0,+ - +0,,,—1
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and 3, (A<i<2") are n—1 dimensional manifolds defined by the equations
qg=c() and p=d(2), c(?) and d(i) being certain constants.

Corollary 7. If there is a solution (q(t), p(t)) of 9(,(6) holomorphic at
tye St then (t, q@), p(E)) e 2 for te Sy, .1

Consider the restriction of the system 4(,(6) to S;,.,. By the explicit
form of L', we see that L} |;, and L} |;, (2<%, j<n) do not contain p, ex-
plicitly. Therefore the system
(6) aquaLi’ apj=_aLi’ 2<i, j<n

at, op; ot 94,

on 2, is completely integrable by virtue of Proposition 5.

Proposition 8. If 1—6,—8,,,#0, the system (6) on X, is the Hamil-
tonian system I,_1(0 - - 5 0ns 010 s1s Onvos O i)

This observation combined with Proposition 5 leads to

Proposition 9. Suppose that 1—6,—0,,.¢Z. Let (0,t)e S,.. and
let (¢, p)=(by(t"), - -+, b,(t), b, .o(t), - - -, by, (t)) be an arbitrary solution of
the system (6), which is I, 10y - 50,y 0,0, .15 0oy 0,13), ROlomorphic at
t' =t If we define b,(t') and b,..(t") so that (0, ¢, b)) e 3, b(t) : ="(b(?),
oy by, (t)) by using Proposition 6, then there is a unique solution (q, p)=
a(t) of 9,(6) holomorphic in an open neighbourhood of t, in (P)* satisfy-
ng

lim @(t)=b ().
t1—0
In particular, we have

Corollary 10. Suppose the same assumption as in Proposition 9.
Then, for any t, € St,.,, and b € C** with (t,, b) € X, there is a unique solution
a(t) of 9(,(6) which is holomorphic at t, and lim,_,, d(£)=>b.

4. Application of Theorem 1 to 4,. In this section, we use z=
(%, - -+, @,,) instead of (¢, p). Suppose that :=1—6,—0,,, € C\(—o0,0]U
[1, c0), then the system .9(,(6) satisfies the assumptions (A-1), ---, (A-4) in
Section 1. Theorem 1 tells us that there is a #-symplectic transformation
(t, ©)—(t, X) which reduces 9(,(6) to a Hamiltonian system (2) with the
Hamiltonian H._ :

HL=ﬁXxXn+1+(X1Xn+1)2y H.=...=H.=0.

This observation combined with Proposition 9 leads to

Theorem 11. Suppose that n:=1—6,—0,., € C\(— oo, 0] U[1, oo).
Then, for any holomorphic solution a(t) of I,(6) at t,e Sy,., obtained in

Proposition 9, there is a 2n-parameter family of solutions of
I(,(0) of the form
M) =a @) +o@, X(@), o, X)e (M),
where x=a(t)+¢(t, X) is a #-symplectic transformation for a domain

D@y, 7, p):={1, @) € C" 5 |t —1,| <7, |2, By 1], 8180 1], | 2] <p G£ERAD)}

with some positive constants r and p, and X (t) is given by
X(t)=(cltf+zclc"+ly Cgs * 5 Co» cn+1t1_”—20w"+1’ Cuszs * 7 CZn),
Cyy ++ 4 Gy, being arbitrary constants.



No. 7] A Reduction of Hamiltonian Systems 231

References

[1] A.D. Brjuno: Analytic form of differential equations. Trans. Moscow Math. Soc.,
25, 131-288 (1971) ; 26, 199-239 (1972).

[2] R. Gérard and T. Tahara: Maillet’s type theorems for non linear singular partial
differential equations (to appear in J. Math. Pures Appl.).

[8] M. Iwano: On a singular point of Briot-Bouquet type of a system of ordinary
differential equations. Comment. Math. Univ. St. Paul., 11, 37-78 (1963).

[4] H. Kimura: The construction of a general solution of a Hamiltonian system with
regular type singularity and its application to Painlevé equations. Annali di mat.
pura ed appli., 134, 363-392 (1983).

Symmetries of the Garnier system and of the associated polynomial Hamil-
tonian system. Proc. Japan Acad., 66A, 176-178 (1990).

[6] H. Kimura and K. Okamoto: On the polynomial Hamiltonian structure of the
Garnier system. J. Math., Pures Appl., 63, 129-142 (1984).

[7] K. Okamoto: Isomonodromic deformation and Painlevé equations, and the Gar-
nier system. J. Fac. Sci. Univ. Tokyo, Sec. IA, 33, 575-618 (1986).

[8]1 S. Shimomura: Seriesexpansionsof Painlevé transcendents in the neighbourhood
of a fixed singular points. Funke. Ekvac., 25, 363-371 (1982).

[9]1 K. Takano: A 2-parameter family of solutions of Painlevé equation (V) near
point at infinity. ibid., 26, 79-113 (1983).

Reduction for Painlevé equations at the fixed singular point of the first
kind. ibid., 29, 99-119 (1987).

[11] S. Yoshida: A general solution of a nonlinear 2-system without Poincaré’s con-
dition of at an irregular singular point. ibid., 27, 367-391 (1984).

[5]

[10]



