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and, Domains of Holomorphy
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Abstract: Let X be a C-manifold, M a closed submanifold, 9 an open
set of M. We introduce in 1 a class of domains U of X called fJ-tuboids.
They coincide with the original ones by [2] apart from an additional as-
sumption, of cone type, at a/2. In 2 we take a complex of sheaves on
X and denote by/a() the microlocalization of along f2. We take a closed
convex proper cone 2 of T*X and describe the stalk of Rr.RF/(ZZ)r*r by
means of cohomology groups of over 9-tuboids U with profile ’=int.
In 3 we take X=Cn, M=R, [2 open convex in M and prove that in the
class of 2-tuboids with a prescribed profile there is a fundamental system
of domains of holomorphy. By this tool we prove in 4 a decomposition
theorem for the microsupport at the boundary SSa by Schapira [9] (cf. also
[5]).

1. Let X be a C manifold, M a closed submanifold, let r" TX-->X
(resp z" T*X--+X) be the tangent (resp cotangent) bundle to X, and let
r" TX--->M (resp z" T*zX-->M)be the normal (resp conormal) bundle to M
in X. We note that we have an embedding ’ TM >MxTX and a
projection a" M x TX--TX. For a subset A of X (resp of M) we shall
define the strict normal cone of A in X (resp M) by NX(A)= TX\C(X\A, A)
(resp N(A)=TM\C(M\A,A)) where C(., .) is the closed cone of TX de-
fined in [6]. If no confusion may arise, we shall omit the superscripts X
and M. Let 2 be an open set of M and x0 a pint of . We shall assume
(1.1) No(g) 4= O.
Let r be an open convex cone of TX with r(r)/2.

Definition 1.1o A domain UcX is said to be an 9-tuboid with profile
r when
(1.2) a(M xTX\C(X\ U,

One proves that 0 e ToX\Co(X\ U, ) iff for a choice of local coordi-
nates there exists a neighborhood V of x0 and an open cone G containing
s.t. ((9 f V)+ G) f Vc U. In particular"

TX\C(X\ U, [2)=(TX\C(X\ U, 9)) +N(/2).
Lemma 1.2. Let (1.2) hold. Then there exists an open convex cone

TX"
(1.3) cTX\C(X\ U,

Proof. For a choi.ce of coordinates on X we identify
(1.4) M x TX-- TM TX (, +/- 1 y).
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Let t e Nt(9), t 1 and let ’ c c, (in the sense that ’/R/c c7). Owing
to (1.2) we then have for suitable
(1.5) TtXCt(X U, 9) R (+ (r)e)
(where (7)={y e 7" y[<}). One may find an open cone flcTX with
convex fibers such that Vt"

t TtXCt(X U, 9), Co(t {0})
In particular a(Bt)D7,. If we replace fl by fl+N(9) we get the conclusion.

Let 7cTX, flcM x TX, acTM be open (convex) cones with
Then

Lemma 1.3. We have
(1.6) a(fl)D@v7’C c ]fl’ open convex"

fl’ Da and flD fl’ a- ’(7’).
Proof. In the coordinates of (1.4) and for 0 e Nt(9), Iol=l, we have"

(1.7)

Proposition 1.4. Condition (1.2) is equivalent, for a choice of coor-
dinates x+j- 1 y e X TX to"
(1.8) U{x+j-lyeg7" y<}vr’c7 and for suitable
(where 5=dist (x, 39)A1).

Proof. The proof just consists in rephrasing Lemma 1.3 with
N(9).

2. Let X be a C-manifold o dimension n, M a closed submaniold

of X of codimension l, and let TMM xTXTX and T*MM X x T*X
oT*X be the natural mappings. We shall consider the amilies o open
convex cones 7cTX (or acTM or tic TX) and closed coavex proper cones
2cTX (or rcT*M or zcT*X). They are related by 2=7 (or r=a,
flo), where 7o (ao, flo) denote the polar cone to 7 (a, fl). It is immediate to
prove that"
(2.1) a(fl)Y@Z TXc2

One also sees that if p(fl) is proper, then
(2.2) Z proper @ Z TX proper

c.h. (Z) T%X c.h. (Z T%X),
where "c.h." denotes the convex hull. We denote by D(X) the derived
category of the category of complexes of sheaves with bounded cohomology.
For e Ob D(X) and for 9cM open, we put Z,()=Z hom (Z, ) (where

Z hom (.,.) is the bifunctor of [6, 7]) and call it the microlocalization o
along 9. Let x0 e 39.

MTheorem 2.1. Assume that Nxo(9)O, let be a closed convex proper
cone of TX containing 9 XxTX at Xo. Then
(2.3) (Z,()r.)o li H-(U B, )

U,B

where U (resp B) ranges through the family of tuboids with profile
int o0. (resp open neighborhoods of Xo).
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Proof (cf. also [11]). Let us denote by / the cones of T*X with
p([)cN() and/[ T*Xc; by (2.2) it is not restrictive to assume the /’s
to be proper and convex. Let q" XXX, ]=1, 2 be the projections, let
s" XXX, (x, y)x--y and let be the diagonal of XX. We have"

(2.4) H(TX, Z()r)=H(T*X, ())

=liH-Roz(Rql,Zm, ),
W

for W verifying T(XX X)C((XXX) W) int o, in the identification
T(XxX) TX. (cf. 6, Proposition 2.3.2] as for the latter equality.)

But for a fundamental system of neighborhoods B of x0, we have"
(2.5) RZ(x=Z(w(x[--dim M][.
If we assume (2.5) the conclusion is immediate since the sets q(W (X 9))
are a fundamental system of 9-tuboids with profile int 2o (el. [11, Lemma
1.2 and 1.3]). Let us prove (2.5). We identify TXX and M xxTX
TXTM (for a choice of a projection XM). Let Fc cZ, NN(9)
vx close to x0 and put G=F+N, G=G{geG" (g,O}<e} where 0 is a

Mfixed vector of No(9). We shall prove (2.5) with W replaced by s’-(G).
In aet set A=q;(x)s’-(G)(X9). Let L be the plane thro.ugh x0
+0 with eonormal 0 and L: the half-space with exterior eonormal 0 and
boundary L. Then for suitable B and Vx e B, we see that A is an open
connected set which verifies’

Vy e A
(y+N)(z+N)L,O Vy, zeA,

(for a new e’). Hence A is e.ntractile and RF(A, Z)=Z[dim M].

Remark 2.2. If 9 is convex in MR", then we get a "global" version
of Theorem 2.1" H(TX, Z,()rx)=vH-(U, ).

3. We shall extend here the results of [2]. Let Cn=R+(-1R,
let= be the first projection C"R, let R"=R"{0}, and set S"-="/R+.
We shall call (convex) cone of C" any subset y of C" with (convex)conic
-fibers. For cones , ’ o C", we write ’ when 7 (R+#- 1S-)
is compact ia r. Let 9 be an open set o R", and an open convex
eone of 9TX, We shall assume all through this section that 9 is

def. def.
convex. For xe , we set 6=dist(x,O)l and y=?-(). We recall
from 1 that a domain U is an 9-tuboid with profile , when V?’c cy "UD(x+#-!y e ?,ly]e). We shall also assume without loss of gener-
ality that UC in what follows. Note that if (?)c, then our definition
coincides with the original one by [2].

Lemma 3.1. Let U’U be -tuboids with profiles y’c, and set
W’=(?’), W=(?). Assume $ha$ U’ has convex fibers, $hat’U, and
ha

(3.1) For a finite open covering V’39 W’, for open truncated
cones G’ and H’ with G’ c cH’, we have
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U, c [._) x q- / -1G’ [..) x+ /-1H U.

Then for any " with ’"7 there exists an O-tuboid U" with profile

’ such that" U" has convex fibers; U’cU" and "cU; (3.1) holds for
new V’ G" H’’

Proof. Set
U" x+( lc.h.(U "(r),).

According to [2], U" satisfies all requirements excep over a neighborhood
V with V V satisfyingof . We decompose such a neighborhood as

Vc c W, cV+(- 1F"c c. (Observe that here the F’s (resp. G’s) are
cones (resp truncated cones).) We assume also (3.1) to be satisfied by
the V’s such that V W’@fl (and neglect the other V’s). We have

U x+- I c.h. (Gi ETa).
Since , c.h. (G’F")=G’, then x and for suitable and J’ with G’c
c cH’, we have that c.h.(G’F’J)cJ’F. Let FF" with V+F
c; since U has profile , then Uavx+F,,,,. Thus if we take
x<x and set G"=J’UF’,, H"=H’ F,,, we get

UVc x+-lGTc x+(-1Hi’cU.
9V #V

Reasoning by induction one immediately obtains from Lemma 3.1.
Proposition 3.2. Any 9-tuboid with profile contains an -tuboid

with the same profile and with convex fibers.
Let G be an open convex set of R" contained in {y" y1<1/2} and with

0 G. Let S"-={F R =1} and define ao=supoa (g, --F). We also

write a,=a,o and define =,s,-{Y" (Y,F)+a-[Y+a,Fl>O} (cf. [2]).
Clearly

(8.2) G, and C(,{0})=C(G,{0}).
Le be an open convex set of R and an open convex cone of +-1R.

Theorem 3.3. Let U be an 9-tuboid with profile . Then U contains
an -tuboid with the same profile which is in addition a domain o/holo-
morphy.

Proof. It is not restrictive to assume that U has convex fibers and
that Uc{x+(-ly" x9, ly<6}, small. Let 9 be defined by (x)<0
o -- being a convex function; clearly --(x) is equivalent to 6 over
K 9 (Kc cR"). We also remark that C"R, z--O (Re z) is plurisubhar-
monic. For a 9 ff) and F S"-, we write a,=av (=supuv (y, --)),
and let +,(x, y)a"(y, )+a,((x)/#(a))-Iy+a,l+ix-al. We define

U’={x+-ly" x 9() and +,(x, y)>0a (), and q S"-}.
Clearly UccUqx. Moreover"
(3.4) {x+- y" +,(x, y) >0}

{ ( ( ) )
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By (3.4) one proves as in [2] that U’ is an open domain. It remains to
prove that it is an tg-tuboid of profile ?. Let W’+G’c c’. Fix xo e W"
W’, fix 0 and define U (resp U, resp U) by adding in the definition
(3.3) for U’ the condition a e W’ and ((Xo)/(a)2)_, (resp a e W’ and
((x0)/(a)) , resp a e W’) hence U’= U U U [J U. By the second of (3.2)
one gets (U)0Go for suitable independent of x0 e W". One also easily
sees that (U)o’S-0, and (U)0S- for d-- dist (W’, W"). The conclu-
sion follows.

4. Let M be a C-manifold of dimension n, X a complexification of
M, /2 an open C-convex subset of M. Let Gx be the sheaf of holomorphic
functions on X, and or/x the sheaf of relative orientation of M in X. We
shall deal with the complex by Schapira (see also [5]) of microfunctions at
the boundary
(4.1) 5’_=Z hom (Z, Ox)(R) or/x[n].
Let x e 9, let be a closed convex proper cone of 2T*X such that (,)
is a neighborhood of x in/2 and set T int. The results of 2 and 3 give

Theorem 4.1. We have

(4.2) [((Cx)r,X)= (0 /or i:O
lifo F(U, Gx) for i=0,
u

where U ranges through the family of tO-tuboids of holomorphy of X with
profile .

We assume now that
(4.3) (C,x)r is concentrated in degree 0

(cf. [9] and [3] or sufficient condition for (4.3) to hold). Let . be the
sheaf of hyperfunctions on M, let " 9---M be the embedding, and let
p()

., (_). We recall that ,((CnIx)r,x)=Fn(..q)) We also recall
that for f e fn(_M) the microsupport at the boundary SS(f) is the support
of f identified to a section of (C,x)x. We then get

Proposition 4.2. Let f e F,(.) and let , ]=1, ..., s be a family of
closed convex proper cones with .=2SS(f) and with () being a
neighborhood of x in V]. Then we may find f e F,(), ]=1,...,s
such that f==lf and SS,(f)2.

Proof. One sees that the property" (((Cx)rx)=0 Vi_l, proved

in Theorem 4.1, is stable under finite intersection and finite union of 2’s.
(The first is trivial while the second is an easy application of the Mayer-
Vietoris long exact sequence.) The conclusion follows at once.

Some decomposition theorem of the above type was already stated, in
a different frame in [8].

Corollary 4.3. Let f e F()x and let p e *X, (p)=x. Then p e
SS,(f) if and only if f is a finite sum of boundary values of holomorphic

functions F e Ox(U) with the Us being [2-tuboids whose profiles verify
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