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47. On the Cauchy.Kowalevskaya Theorem for System

By Waichiro MATSUMOTO*) and Hideo YAMAHARA**)

(Communicated by Kunihiko KODAIRA, M. J. A., June Ii, 1991)

1. Introduction and result. In this note, we shall study the
Cauchy-Kowalevskaya theorem for systems of partial differential equa-
tions which are nondegenerate on 3. (We say that a system is "non-
degenerate on 3," when it satisfies the major premise in Theorem 3.1 in
M. Miyake [5].) Let /2 be an open set in CC. If we require the
Cauchy problem is uniquely solvable in C[[t, x]], by virtue o Theorem 3.1
in M. Miyake [5], it is enough to consider the following Cauchy problem:

N

lOtus(t, x)--.= a.(t, x, Ox)U(t, x)--f(t, x),
(1.1)

(u(to, x)---- (x), (1 < i
where all coefficients are holomorphic in tg, f (liN) are given holomor-
phic unctions, (liN) are holomorphic initial data and u (liN)
are unknown functions.
We also denote (1.1) by

(1.1’) (P(t, x, D,, D)u--Du(t, x)-A(t, x, D)u(t, x)-- f(t, x),
u(t o, x) (x),

where D and D are (/- 1)-3t and (/- 1)-3 respectively, A(t, x, D) is an
N N matrix and u, f and are N-vectors.

We say that the Cauchy-Kowalevskaya theorem holds for P(t, x, D, D)
when, or any (to, Xo) in tg, any neighborhood o of (to, Xo), any f(t, x) in
((o) and any (x) in (((o{t=to}), there exists an unique holomorphic
solution u(t, x) of (1.19 in a neighborhood of (to, Xo). Here, f(t, x) e
means that f(t, x) is holomorphic in w, and so on.

When the order of A(t, x, D) is at most one, the Cauchy-Kowalevskaya
theorem holds. So, we are interested in the case that the order
A(t, x, D) is greater than one.

In the case of constant co.efficients, the necessary and sufficient condi-
tion or the Cauchy-Kowalevskaya theorem is that the characteristic poly-
nomial det (rI--A(t, x, )) is a Kowalevskian polynomial, that is, its degree
on r and 5 is at most N. (See S. Mizohata [6].) As was clarified in [6], the
above condition is neither necessary nor sufficient in the case of variable
coefficients. In [6], S. Mizohata proposed a necessary condition. Follow-
ing it, M. Miyake obtained the necessary and sufficient condition in case
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of/=1 in [3]. He also proposed a necessary condition in the general case
through a construction of a formal solution. (See also [4].)

Our result is a generalization of M. Miyake’s one. However, we do
not adopt the idea of Volevich system but we introduce weighting opera-
tors. (See W. Matsumoto [2].) Therefore, we consider the order of each
entry of matrix of differential operator as the normal one. Our standing
point is the normal form of matrix in the class of meromorphic formal
symbols, which is developed in W. Matsumoto [2]. We recall it.

Definition. We say that a formal sum =0 p(t,, x, ) is a meromorphic
symbol of order , when it satisfies the following conditions.
1) There exists a conic analytic set X in tg(C\{0}) such that p(t, x,

belongs to /(2 (C\{0})) 3T(t9 (CX)) and it is homogeneous of
degree ,--i.

2) WhenoxFoinx(C{O})isconicand(oFo)([[[[=l}iscompact
in (9 X(CX)) {lli=l}, there exist positive constants C and R for
which p,(t, x, ) satisfies the following estimate on

(1.2) () (t, x, )1<Fi(a)

+(i e Z+, a e + fi e Z).
Here, we use theusual notation" (.()(t, x,{) =D{ap(t,x,{), (a e _++ and

fle Z) and {[{{:}Re}+]Im 1.
Remark. For and fl in Z we also denote Dg3p(t, x,
We denote the set o the meromorphic formal symbols by (9). It

is an algebra with the product" (p q)=r where P=%0 P, q==o q, r=

=or and r=.+.=(1
In [2], W. Matsumoto gave a normal form o.f matrix with entries in

Theorem 0 (= Theorem 3.1 in [2]). Let A (t, x, ) be a.n N N matrix
with entries in 3(9) of order , and P(t, x, D, ) be D--A (t, x, ). We
suppose tha,t the principal part of A (t, x, ) is holomorphic in 9 X (C{O})
and has eigenvalue 2(t,x,) with constant multiplicity m (l]d,
=m=N). Then, there exist {r},, {n}, (;1n=m) and
an invertible matrix (t, x, ) in 3(9) such that

Q(t x, Dr, ),(1.3) - Po=Q(t, x, Dt, )=I(Dt--2(t, x, ))--(t, x, ),

2(t, x, )= 21(t, x, ),
i=0

...
where Iq i the it matfi oI order q, Jq i the Joda mati o oder q
with eo eigele d (t, , ) i Xmatri ith
().

Remark. In heorem O, we take as a holomorhie scale instead of

I111. Pot example, we rewrite as (/), where indicates the order
of the symbol. Of course, we can relaee it by any (2
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Remark. If the entries of A0(t, x, ) are polynomials in and if is
greater than one, d must be one.

Now, we can state our result.
Theorem. Suppose that the entries of A(t, x, Dx) is partial differ-

ential operators of order with holomorphic coefficients in . The follow-
ing (a), (b) and (c) are equivalent.
(a) The Cauchy-Kowalevskaya theorem holds for P(t, x, Dr, D).
(b) The principal symbol of A(t, x, ) is nilpotent in [2 C. In the normal

form of P(t, x, Dt, ) in (), we set

(t, , )=
b(1), "", b()g=l

Then, further, the following relations holds"
(1.4) Order of b(q)l-(,-l)(n-q),

(l]d,lkr, 1qn).
(c) The system P(t, x, De, ) can be reduced to a first order system by a

similar transformation in the meromorphic formal symbol class
(9).
2. Sketch of the proof of theorem.

(a)@(b). Considering P(t, x, D, ) and its normal form out of the pole set
of (t, x, ), (t, x, )- and (t, x, ), we can prove this assertion by a
usual microlocal energy method. (See H. Yamahara [7].)
(b)@(c). We apply a similar transformation to the normal form of
P(t, x, De, ) by a weighting operator- -oP becomes a first order system in (9)[Dt].

Thus, our main purpose of this section is to give an outline of the
proo from (c) to (a), that is, we shall show the sufficiency o.f (c) o.r the
Cauchy-Kowalevskaya theorem for P(t, x, D, D).

If we can solve (1.1’) with f(t, x)=0 for arbitrary to and if we can ob-
tain a uniform estimate of the solution on t, we can also solve (1.1’)
with a general f(t, x) by Duhamel’s principle. Then, we only consider
(1.1’) in the case of f(t, x)=0. The equations become
(2.1) Dtu=A(t, x, D)u.
This implies that we can express D[u by a linear sum of spacial deriva-
tives of u(t, x). Let Us set
(2.2) D[u=A[]](t, x, D)u.
A[]](t, x, ) is obtained successively by the following formulas’

A[0] =I,(2.8)
A[+l](t, , )=(DA[])(t, , )+(A[] A)(t, , ).

Remark tha A[](t, , ) is holomorhie in 9 XC and a olynomial on .
hus, he fundamental solution of (2.1) can be expressed formally in

the following way"

(2.4) E(t, x, D to)= {J- l(t--t)} A[]](to,.x, D).
o .i
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We set A[]](t, x, )=.=oA[]](t, x, ). In effect, this is a finite sum. If
we can show the following proposition, the righthand side of (2.4)really
gives the local fundamental solution acting on the holomorphic functions.

Proposition. For an arbitrary compact set K in 12, there exist con-
stants o, C, R and Ro independent of ], for which the following estimate
on A[]](t, x, ) holds on K C"
(2.5) IA[]] () (/ x, )I<CRo R-n++’"’+’a’(]-h) i][lfll []C]]+--’’i(a)\v

h=O
7.1+(i e Z/, e _/ fi e Z+).

From now on, we shall show the estimate (2.5). Under Condition (c),
there exists an invertible matrix (t, x, ) in 3(9) such that
D,-B(t, x, ) where .(t, x, ) belongs to 3(9) and its order is at most one.
We define {B[j](t, x, )}--0 from .(t, x, ) by the same way as {A[j](t, x, 5)})=0,
that is, they are determined by

B[0]--I,(2.6)
B[]+l](t, x, )=(DB[]])(t, x, )+ (BIll )(t, x, ).

Let us denote again the union of the pole sets of //, //- and

_
by 2:. Ap-

plying Lemma 1.2 in L. Boutet de Monvel and P. Kre [1], we get the fol-
lowing estimate from (2.6). (See also (1.13) and Proposition 1.2 in
W. Matsumoto [2].)

Lemma 1. When ooo Fo is conic and (oo Fo) {1111=1} is compact
in (S2(C\2:)){1111=1}, the following estimate holds"

(2 7) [Brz,) (t, x, )I<CR R-++’"’+’l(]-h) i J]ll IICI]--’’LJJi(a)
h=0

There exists the following relation between (A[]](t,x,C)}/__o and
(Bill(t, x,

(2.8) A[]](t, x, )---o k (]-It)
(Dt-ll) B[k] Y/-(t, x, C).

By the relation (2.8)and Lemma 2.1 in [1], Lemma 1 implies the following.

Lemma 2. When OOo Fo is. conic and (0o Fo) (11 --1) is compact
in (2 (C\)) (1111--1), the following estimate holds"

(2.9) IA rzl()a(.)ct, x, ) IgCRo R-++’"’ +,,(]_h),i,lllfll,llll +-- .,,
h=0

where o is (Order of // + Order of //-).
By virtue of the maximum principle on the holomorphic function,

(2.9) holds on 2 C, that is, we have arrived at the estimate (2.5). The
last argument was employed on a formal solution in M. Miyake [3]. We
divert it to.a formal fundamental solution.
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