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On the Existence and Regularity of the Solution
of Stokes Problem in Arbitrary Dimension

By Ch.6rif AMROUCHE*) and Vivette GIRAULT**)

(Communicated by Kunihiko KODAIRA, M. $. A., May 13, 1991)

Let/2 be a bounded and connected open set of R (N2) and let f, , g

bethree given functions that satisfy the compatibility condition" |,(x)dx
--| g. n da, where n denotes the exterior normal to F. Recall the Stokes

F
problem with unit viscosity"

Find a pair (u.p) such that"
(1)-(3) --lu+Fp=f in/2, div u=qt in tO, u=g on F.
The homogeneous case corresponds to =0 and g=0.

Let m_--1 be an integer;let r denote an arbitrary real number such
that 1 (r( o and let r’ be its conjugate" 1/r+l/r’=l. We agree to denote
by X the product space X. This note establishes that, for each f in
W’(9), in W+’(2) and g in Wm+2-’r’r(]’), problem (1)-(3) has a unique
solution u in W+,(/2) and p in W’+:’r(fY)/R that depends continuously upon
the data. The regularity hypotheses that we impose on the boundary are
optimal when m:>0. For a smoother boundary, these results are of course
not new (cf. Cattabriga [6] and Geymonat [7]), but the proof that we present
here is new.

Our proof is based on the following fundamental orthogonal decompo-
sition, which is very closely related to the Stokes problem"
( 4 ) W +’() W’() (W"+,() V,,)(R)(W +’(S) G,,),
where

Vl,r--{v e W0’r(/2) div v=0} and G,={v e W0’(t9) -/v=lTq, q e L(t9)}.
First, ]or m_0, we shall establish (4) by showing that the homogeneous

Stokes problem is elliptic in the sense of Agmon-Douglis-Nirenberg [2] this
will immediately yield the desired result for such m. Unfortunately, the
material in [2] does not apply when m=-1. We shall instead, solve by
duality a weaker problem (an approach already used by Giga [8]), and then
complete by interpolation our desired result 2or m----1.

Proposition 1. Let m e N and let the domain f2 be Cm+l’l. Assume
that the homogeneous Stokes problem has a. solution u e W2’(f2) and p e
W1,([2). If in addition f e W’r(9), then u e W+2’r(f2), P e W+I’r(9) and
( 5 ) u Wm+u,r(9)-J[-IIPl wm+.,r’f)/RC

Proof. Following the proof of Proposition 2.2 in Temam [10], p. 33,
we show that the homogeneous Stokes problem is an elliptic system in he
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sense of Agmon-Douglis-Nirenberg [2] (pp. 38-39 and 42-43). When is

C/, Theorem 10.5, p. 78 [2], yields a weaker estimate than (5), namely"

But, since the domain is bounded and the solution is unique, according to
Remark 2 pp. 668-669 in [1], we can take d=0. Furthermore, applying
the material of Grisvard [10], the estimate of Theorem 10.5 is also valid
for Cr+’ domains.

Proposition 1 is not an existence result, but it permits to obtain
regularity result whenever a solution exists. With this proposition, we
can prove (4).

Proposition 2. Let m e N and let 9 be C+,’. Then the decomposition
(4) holds.

Proof. Let E deaote the space in the left-hand side of (4) and F the
space in the right-hand side. To prove the equality, let us establish that
F is closed and dense in E.

As far as the closure is concerned, let u, be a sequence of F that con-
verges to some element u in W/"(9) W’(C2). Then u, has the form u,
--v,+w, with v, e W/’(2) V. and w, e W/’(O)G.. Furthermore,
by definition, w, satisfies" --Aw,--gq,, where qn e W/’(C2). Set f,.=
--Av+q,. Thus, the pair (v,, q,) e W/’r(9) W/ () is the solution

of a homogeaeous Stokes problem with right-hand side f,. Therefore, since
f, tends to --Au in W.(C2), Proposition 1 implies that the sequeaces v,, q,
are bounded respectively in W/.(9)c W.(9) and W/’(9)/R. As a con-
sequence, w, is also bounded i W/.(C2)VI W.(C2) and both v,-v and
w,-w weakly in W/’(O) W0’(2), with v e V.r and w e G..

To prove the density, let L be an element o E’ that vanishes on F and
let us show that L-0. It is easy to check that L has a unique extension L e
W-’’(9) that vanishes on V.G.. Applying a simplified version (cf. for
instaace [4]) of de Rham’s theorem, this implies in particular that L--gq
for some q e Lr’(). Then, introducing the solution z e W’’(9) of the prob-
lem --Az---gq, we have or all w e G." <z, --Aw> =0; i.e. <z, Vp>=O for all
p e L(9). This means that div z----0; hence z=0 and in turn L=0.

With this, the homogeneous Stokes problem reduces to a Laplace
equation.

Theorem 3. Let m e N and let [2 be C+’. For each f e W’([2), the
homogeneous Stokes problem has a unique solution u e W/’(9) and p e
W+’()/R and,

Proof. Let v e W’(9) be the solution of the problem --Av--f in/2.

It stems rom the well-known regularity properties of this operator that
v e W+’(9) with continuous dependence on f. Then, by virtue of Pro-
position 2, v--u+w, with ue W+’(C2) V. and w e W+’(9)G.. But
siace --Aw--gp, with p e W+’(9), we derive immediately that the pair u
and p satisfies" --Au+gp-f, div u-0.
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Then the non homogeneous problem follows by using an adequate
lifting operator.

Theorem 4. Let m e N and let D be C/1’1. For each f e W’r(O), e

W/’(O) and g e W/-’m(F) such that" I (x)dx=l- g.nda, the non ho-
J

mogeneous Stokes problem (1)-(3) has a unique solution u e W/’(O) and
p e W+I’r(R)/R and,

Proof. Owing to the compatibility condition, (el. [3] or [4]), we can
associate with and g a function u0 e W/’(tg), such that div uo= in
uo=g on F and

This reduces the problem to a homogeneous one and the result follows
from Theorem 3.

There is no proof of the a priori estimates of Proposition 1 for m---- --1
and so we cannot handle this case directly. But we can solve by duality a
simplified version o,f the Stokes problem that corresponds to m----2. The
ollowing proposition is party due to Giga [8].

Proposition 5.. Let f2 be C’. For each g e W-/’(F) satisfying g.n

=0, the problem
(9)-(11) --Av+Vq=O in , divv=O in , v=g on F,
has a unique solution v e L(f)) and q e W-’(9) /R and,
(12) [Iv[l()

Proof. First let us show that if v e L(9) satisfies (9) and (10)then
the trace of v on F belongs to -/’(F), so that the bounday condition
(11) makes sense. On one hand, the fact that div v=0 implies that v.n e
W-/,([’). On the other hand, it ollows from (9) and (10) that v e T,
where T={w e L(tg) Aw e X’, divw=0} and X={w e W’’(tg); divw e
Wo,’(O)}. Then a density argument yields the Green’s formula"

(13) v,

where Y--’’(0)? X. By observing that the range space of the operator
O/On on Y is the space Z={w e /,’(F) w.n=0}, and that its dual space
Z’ has the identification’ Z’={ge W-/,(F); g.n=0}, we see that, by
virtue o_f (13), the tangential trace of v belongs precisely to, Z’.

Now, the proof is based on a duality argument developed by Lions-
Magenes [11]. Applying (13), we readily derive that problem (9)-(11) has
the equivalent variational formulation (that can also be found in [8])" find
v e Lr(D) and q e W-’())/R such that"

I (Ou) VueY, VpeW"’(t9).v(-Au+ gp)dx- (q, div u} g,
r

But, owing to Theorem 4, for each f e L’(O) and C e W0’’(O)fLg’(tg)
(where L’(O) denotes the subspace of functions of L’(tg)with zero mean
value), there exists a unique solution u e Y and p e W’’(9)/R of the prob-
lem"
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--lu+gp--f in /2, divu=q in 2, u=0 on F.
Moreover, it follo.ws from the continuity of the mapping 3/3n: W2.’(9)

--Wm’(F) and the estimate (7), that the mapping (f,
defines an element of the dual space of L’(O)[W,’(9)L’(9)], with
norm bounded by Cllgll-,,.(r). Then thetheorem follows from Riesz’
representation theorem.

The next corollary, which relaxes the compatibility condition on the
data g, is an easy consequence of Proposition 5.

Corollary 6. Proposition 5 is also valid for each g e W-/’(F) satis-
fying (g. n, 1} O.

Then by interpolating between the results of Corollary 6 and Theorem
4 with m---0, f=0 and qt--0, we obtain:

Corollary 7. Let 0 be C,. For each g e W-v"(F) satisfying

g. nda--O, of problem (9)-(11) regularity" v e W’(9)the solution has the
1"

and q e L(O) /R and,
v I1....,) / q I1-.,). <_C g

From this and the isomorphism properties o the divergence operator,
we derive"

Corollary 8. Let 9 be O,. For each e L(), problem (1)-(3), with
f--O and g--O, has a unique solution u e w’r(9) and p e L(9) /R and,
(14) u II,,,,<,,) + p ll-(,,>/,<_ C

Thi lat orol]ry permit to complete the statement o Proposition 2
it gie the analogue o the well-known decomposition" H(Q):VV"
(el. or inirme [9]).

Proposition 9. If is C’’, then W’(O)=V,@G,,.
Finally, applying the same arguments as in Theorems 3 and 4, we

easily derive"
Theorem 10. Let 12 be C’. For each f e W-:’(9), e L(9) and g e

W:-/"(F) satisfying’[ (x)dx=[ g.nda, problem (1)-(3) has a unique
d

solution u e W,(12) and p e L(9)/R and,
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