5. A Necessary Condition for Monotone (P, μ)-u.d. mod 1 Sequences

By Kazuo Goto*) and Takeshi Kano**)
(Communicated by Shokichi IyanagA, m. J. A., Jan. 14, 1991)

Abstract: Schatte [2: assertion (15)] remarked that

$$
\lim _{n \rightarrow \infty} g(n) / \log n=\infty,
$$

if the sequence $(g(n))$ is non-decreasing and uniformly distributed in the ordinary sense. Niederreiter proved ([1] Theorem 2) that:

Let μ be a Borel probability measure on R / Z that is not a point measure and let p be a weighted means. If $(g(n)$) is a non-decreasing (P, μ) u.d. $\bmod 1$ sequence, then necessarily

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g(n) / \log s(n)=\infty, \tag{*}
\end{equation*}
$$

where $s(n)=p(1)+p(2)+\cdots+p(n)$ is such that $s(n) \uparrow \infty$.
In this paper we shall prove (*) along the same lines as Schatte.
§ 1. Definitions. Let $P=(p(n)), n=1,2, \cdots$, be a sequence of nonnegative real numbers with $p(1)>0$. For $N \geqq 1$, we put $s(N)=p(1)+p(2)$ $+\cdots+p(N)$ and assume throughout that $s(N) \rightarrow \infty$ as $N \rightarrow \infty$.

We define after Tsuji [3] the ($M, p(n)$)-u.d. mod 1 .
Definition 1. A sequence $(g(n))$ is said to be ($M, p(n)$)-uniformly distributed $\bmod 1($ or shortly $(M, p(n))$-u.d. $\bmod 1)$, if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{s(N)} \sum_{n=1}^{N} p(n) C_{J}(\{g(n)\})=|J| \tag{1}
\end{equation*}
$$

holds for all intervals J in $\boldsymbol{R} / \boldsymbol{Z}$. Here C_{J} denotes the characteristic function of J.

It is known that an alternative definition is as follows:
A sequence $(g(n))$ is said to be $(M, p(n))$-u.d. $\bmod 1$ if for all positive integers h,

$$
\lim _{N \rightarrow \infty} \frac{1}{s(N)} \sum_{n=1}^{N} p(n) e^{2 \pi i n g(n)}=0
$$

We define after Niederreiter [1] the (P, μ)-u.d. mod 1 as follows:
Definition 2. Let ($p(n)$) and $(s(n))$ be sequences of Definition 1 and μ be a Borel probability measure on $\boldsymbol{R} / \boldsymbol{Z}$. Then a sequence $(g(n))$ is said to be (P, μ)-uniformly distributed $\bmod 1($ or shortly (P, μ)-u.d. $\bmod 1)$, if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{s(N)} \sum_{n=1}^{N} p(n) C_{J}(\{g(n)\})=\mu(J) \tag{2}
\end{equation*}
$$

holds for all J in $\boldsymbol{R} / \boldsymbol{Z}$. Or equivalently, a sequence $(g(n))$ is said to be (P, μ)-u.d. $\bmod 1$ if

[^0]$$
\lim _{N \rightarrow \infty} \frac{1}{s(N)} \sum_{n=1}^{N} p(n) e^{2 \pi i h g(n)}=\int_{0}^{1} e^{2 \pi i h x} d \mu(x)
$$
holds for all positive integers h.
§2. Theorems. Theorem 1. Let $(g(n))$ be a non-decreasing real sequence.

If $(g(n))$ is $(M, p(n))$-u.d. $\bmod 1$, then

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{\log s(n)}=\infty
$$

Proof. Since $g(n)$ is $(M, p(n))$-u.d. $\bmod 1$, for any given $\varepsilon>0$ there exists an N such that for all $n \geqq N$,

$$
\frac{1}{s(n)}\left|\sum_{j=1}^{n} p(j) \exp (2 \pi i g(j))\right|<\varepsilon .
$$

For some fixed N, we can choose a non-decreasing positive real sequence $\{\nu(k)\}_{i=0}^{\infty}, \nu(0)=1$ such that $\nu(k) N$ are integers for all k,

$$
s(\nu(k+1) N) \geqq s(\nu(k) N) A(\varepsilon)
$$

and

$$
s(\nu(k+1) N)<s(\nu(k) N) A(\varepsilon)^{2}
$$

where $A(\varepsilon)=(1 / \sqrt{2}+\varepsilon) /(1 / \sqrt{2}-\varepsilon)$.
Since for each $\nu(k)$,

$$
\frac{1}{s(\nu(k) N)}\left|\sum_{j=1}^{\nu(k) N} p(j) \exp (2 \pi i g(j))\right|<\varepsilon
$$

we have

$$
\begin{align*}
& \left|\begin{array}{l}
\nu=\nu(k) N+1 \\
\nu(k+1) N
\end{array} p(j) \exp (2 \pi i(g(j)-g(\nu(k) N)))\right| \tag{3}\\
& \quad=\left|\sum_{j=\nu(k) N+1}^{\nu(k+1) N} p(j) \exp (2 \pi i(g(j)))\right|<\varepsilon(s(\nu(k+1) N)+s(\nu(k) N)) .
\end{align*}
$$

To prove $g(\nu(k+1) N)-g(\nu(k) N)) \geqq 1 / 8$ for all pairs $(k, N), k=0,1, \cdots ;$ $N=1,2, \cdots$, assume on the contrary, that there exists at least one pair (k, N) such that

$$
0 \leqq g(\nu(k+1) N)-g(\nu(k) N))<1 / 8
$$

If we consider the real part of (3), then we have

$$
\left|\sum_{j=\nu(k) N+1}^{\nu(k+1) N} p(j) \cos (2 \pi(g(j)-g(\nu(k) N)))\right|<\varepsilon(s(\nu(k+1) N)+s(\nu(k) N))
$$

Since $g(n)$ is non-decreasing, we have

$$
0 \leqq g(j)-g(\nu(k) N) \leqq g(\nu(k+1) N)-g(\nu(k) N)
$$

Thus

$$
\frac{1}{\sqrt{2}}(s(\nu(k+1) N)-s(\nu(k) N))<\varepsilon(s(\nu(k+1) N)+s(\nu(k) N))
$$

This contradicts to the definition of $(\nu(k))$.
Thus we obtain for $k=0,1,2, \cdots$, and every N,

$$
\begin{equation*}
g(\nu(k+1) N)-g(\nu(k) N)) \geqq 1 / 8 \tag{4}
\end{equation*}
$$

So we have by (4),

$$
g(\nu(m) N) \geqq m / 8+g(N)
$$

On the other hand,

$$
\begin{aligned}
\log s(\nu(m) N) & =\log \frac{s(\nu(m) N)}{s(\nu(m-1) N)} \cdot \frac{s(\nu(m-1) N)}{s(\nu(m-2) N)} \cdots \frac{s(\nu(1) N)}{s(\nu(0) N)} s(N) \\
& \leqq \log A(\varepsilon)^{2 m} s(N)
\end{aligned}
$$

Thus for $\nu(m) N \leqq n<\nu(m+1) N$

$$
\begin{aligned}
\varliminf_{n \rightarrow \infty} \frac{g(n)}{\log s(n)} & \geqq \lim _{m \rightarrow \infty} \frac{g(\nu(m) N)}{\log s(\nu(m+1) N)} \\
& \geqq \varliminf_{m \rightarrow \infty} \frac{m / 8+g(N)}{(2 m+2) \log A(\varepsilon)+\log s(N)}=\frac{1}{16 \log A(\varepsilon)} .
\end{aligned}
$$

Since ε is arbitrarily small, we obtain

$$
\varliminf_{n \rightarrow \infty} \frac{g(n)}{\log s(n)}=\infty,
$$

which proves Theorem 1.
Theorem 2. Let $(g(n))$ be a non-decreasing real sequence. If $g(n)$ is (P, μ)-u.d. $\bmod 1$, then

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{\log s(n)}=\infty
$$

Proof. By the definition of a distribution function, if a random variable X has a distribution function $F(x)$, then $F(X)$ has a uniform distribution function, namely $x=\operatorname{Prob}(X \leqq x)$. For $F(x)=\operatorname{Prob}(X \leqq x)$ implies $F(x)=\operatorname{Prob}(F(X) \leqq F(x))$ since $F(x)$ is increasing. Hence it follows $y=\operatorname{Prob}(F(X) \leqq y)$ which means that $F(X)$ is uniformly distributed.

Now we define $F(x)$ with respect to Borel measure μ,

$$
F(x)=\int_{0}^{x} d \mu=\mu([0, x)) \quad \text { on } \quad x \in[0,1] .
$$

Also we define a sequence $G(n)=[g(n)]+F(\{g(n)\})$, where $[t]$ and $\{t\}$ denote the integral part of t and the fractional part of t, respectively. It follows that $G(n)$ is $(M, p(n))$-u.d. mod 1. From this fact, we have

$$
\frac{G(n)}{\log s(n)}=\frac{[g(n)]+F(\{g(n)\})}{\log s(n)} \leqq \frac{g(n)+1}{\log s(n)} .
$$

Since $s(n) \uparrow \infty$, we have by Theorem 1,

$$
\varliminf_{n \rightarrow \infty} \frac{g(n)}{\log s(n)} \geqq \varliminf_{n \rightarrow \infty} \frac{G(n)}{\log s(n)}=\infty,
$$

which proves Theorem 2.

References

[1] H. Niederreiter: Distribution mod 1 of monotone sequences, Indag. Math., 46, 315-327 (1984).
[2] P. Schatte: On H_{∞}-summability and the uniform distribution of sequences. Math. Nachr., 113, 237-243 (1983).
[3] M. Tsuji: On the uniform distribution of numbers mod 1. J. Math. Soc. Japan, 4, 313-322 (1952).

[^0]: *) Information Science, Sakuyo Junior College.
 **) Department of Mathematics, Faculty of Science, Okayama University.

