43. Some Dolbeault Isomorphisms for Locally Trivial Fiber Spaces and Applications

By Hideaki KAZAMA*) and Takashi UMENO**)
(Communicated by Kunihiko Kodaira, M. J. A., May 13, 1991)

1. Let N be a paracompact complex manifold of complex dimension n, S a Stein manifold of complex dimension l and $\pi: M \rightarrow N$ a locally trivial holomorphic fiber space whose fibers are biholomorphic onto S. Put m := $\dim_c M(=n+l)$. Let $\{D_a\}$ be a locally finite open covering of N satisfying that each D_{α} is a coordinate open subset with the trivialization i_{α} : $\pi^{-1}(D_{\alpha})$ $\rightarrow D_a \times S$ with $\prod_{\alpha} i_a = \pi$, where $\prod_{\alpha} i_a$ denotes the projection $D_a \times S \ni (a,b) \mapsto$ $a \in D_a$. Let $\{U_a\}$ be a sufficiently fine and locally finite open covering of S so that each U_{σ} is biholomorphic onto a polydisc in C^{i} . We sometimes identify $\pi^{-1}(D_{\alpha})$ with $D_{\alpha} \times S$. Let $z_{\alpha} = (z_{\alpha}^{1}, \dots, z_{\alpha}^{n})$ be a local coordinate defined on D_a and $w_a = (w_a^1, \dots, w_a^l)$ a local coordinate defined on U_a . We put $\zeta_{\alpha,\sigma}^i = z_{\alpha}^i \ (1 \le i \le n)$ and $\zeta_{\alpha,\sigma}^{n+j} = w_{\sigma}^j \ (1 \le j \le l)$. Then $\zeta_{\alpha,\sigma} = (\zeta_{\alpha,\sigma}^1, \cdots, \zeta_{\alpha,\sigma}^{n+l}) = 0$ $(z_a^1, \dots, z_a^n, w_a^1, \dots, w_a^l)$ defines a local coordinate in $i_a^{-1}(D_a \times U_a)$. For an open subset $V \subset M$, we put $\mathcal{G}(V) := \{f \mid f \text{ is of class } C^{\infty} \text{ in } V \text{ and for any } \}$ $z \in \pi(V)$, $f \mid \pi^{-1}(z) \cap V$ is holomorphic. We denote by \mathcal{F} the sheaf defined by the presheaf $\{\mathcal{F}(V)\}$. Put $V_{\alpha,\sigma} := V \cap i_{\alpha}^{-1}(D_{\alpha} \times U_{\sigma})$ and $\mathcal{F}^{r,p}(V) := \{\varphi \mid \varphi \text{ is } \{\varphi \mid \varphi \}\}$ a $C^{\infty}(r,p)$ -form on V and $\varphi \mid V_{\alpha,\sigma} = \sum_{I,J} \varphi_{IJ} d\zeta_{\alpha,\sigma}^I \wedge d\bar{z}_{\alpha}^J$, $\varphi_{IJ} \in \mathcal{F}(V_{\alpha,\sigma})$ for each α and σ }, where $I = (i_1, \cdots, i_r)$, $J = (j_1, \cdots, j_p)$, $1 \le i_1 < \cdots < i_r \le n + l$, and $1 \le i_1 < \cdots < i_r \le n + l$ $j_1 < \cdots < j_p \le n$. We get the sheaf $\mathcal{L}^{r,p}$ defined by the presheaf $\{\mathcal{L}^{r,p}(V)\}$ for $0 \le r \le n+l$ and $0 \le p \le n$. Let Ω^r be the sheaf of germs of holomorphic rforms on M. We have an exact sequence

$$0 \to \Omega^r \to \mathcal{F}^{r,0} \to \mathcal{F}^{r,1} \to \cdots \to \mathcal{F}^{r,n} \to 0.$$

For an open subset $W \subset \pi^{-1}(D_{\alpha})$, put $\mathcal{E}_{\alpha}^{r,p,s}(W) := \{\psi \mid \psi \text{ is a } C^{\infty}\ (r,p+s)\text{-form in } W \text{ and } \varphi \mid W \cap i_{\alpha}^{-1}(D_{\alpha} \times U_{\sigma}) = \sum_{I,J,K} \psi_{IJK} d\zeta_{a,\sigma}^{I} \wedge d\overline{z}_{\alpha}^{J} \wedge d\overline{w}_{\sigma}^{K} \text{ for each } \sigma\}$, where $K = (k_{1}, \dots, k_{s})$ and $1 \leq k_{1} < \dots < k_{s} \leq l$. The presheaf $\{\mathcal{E}_{\alpha}^{r,p,s}(W)\}$ makes the sheaf $\mathcal{E}_{\alpha}^{r,p,s}$ on $\pi^{-1}(D_{\alpha})$. Then we have an exact sequence

$$0 \rightarrow \mathcal{F}^{r,p} \mid \pi^{-1}(D_{\alpha}) \rightarrow \mathcal{E}^{r,p,0}_{\alpha} \rightarrow \mathcal{E}^{r,p,1}_{\alpha} \rightarrow \cdots \rightarrow \mathcal{E}^{r,p,l}_{\alpha} \rightarrow 0$$

for each α , where the mapping $\mathcal{E}_{\alpha}^{r,p,s} \to \mathcal{E}_{\alpha}^{r,p,s+1}$ is induced by the Cauchy-Riemann operator $\bar{\partial}_S$ on S. Solving the Cauchy-Riemann equation $\frac{\partial f(z,w)}{\partial \overline{w}_j} = g(z,w)$ with C^{∞} parameter $z \in D_{\alpha}$ and using the standard argument for Dolbeault lemma, we can prove

$$H^{q}(D_{\alpha}\times U_{\sigma},\mathcal{G}^{r,p})\cong\frac{\{\varphi\in H^{0}(D_{\alpha}\times U_{\sigma},\mathcal{E}_{\alpha}^{r,p,q})\,|\,\bar{\partial}_{S}\varphi=0\}}{\bar{\partial}_{S}H^{0}(D_{\alpha}\times U_{\sigma},\mathcal{E}_{\alpha}^{r,p,q-1})}=0$$

^{*)} Department of Mathematics, College of General Education, Kyushu University. This author was partially supported by Grant-in-Aid for Scientific Research (No. 02640137), Ministry of Education, Science and Culture.

^{**} Department of Mathematics, Kyushu Sangyo University.

for $q \ge 1$. This means the open covering $\{D_{\alpha} \times U_{\sigma}\}$ of $D_{\alpha} \times S$ is a Leray covering for the sheaf $\mathcal{Q}^{r,p}$. We denote the Frechet space of all C^{∞} functions on D_{α} by $E = C^{\infty}(D_{\alpha})$. Then the cohomology group $H^{q}(\{D_{\alpha} \times U_{\sigma}\}, \mathcal{Q}^{r,p})$ is isomorphic onto $H^{q}(\{U_{\sigma}\}, \mathcal{Q}^{r} \in E)$ and $H^{q}(\pi^{-1}(D_{\alpha}), \mathcal{Q}^{r,p}) = H^{q}(S, \mathcal{Q}^{r} \in E) = 0$ by the result of Bungart [1] $q \ge 1$. This means the covering $\mathcal{W} = \{\pi^{-1}(D_{\alpha})\}$ is a Leray covering for the sheaf $\mathcal{Q}^{r,p}$ on M. Let $\{\rho_{\alpha}\}$ be a partition of unity subordinate to the covering $\{D_{\alpha}\}$ on N. For $\{f_{\alpha\beta}\} \in Z^{1}(\mathcal{W}, \mathcal{Q}^{r,p})$ we put $g_{\beta}(p) := \sum_{\alpha} \rho_{\alpha} \cdot \pi(p) f_{\alpha\beta}(p) \ p \in \pi^{-1}(D_{\beta})$. Then $\{g_{\alpha}\} \in C^{0}(\mathcal{W}, \mathcal{Q}^{r,p})$ and $\delta\{g_{\alpha}\} = \{f_{\alpha\beta}\}$. Hence $H^{1}(M, \mathcal{Q}^{r,p}) = 0$. Similarly we have $H^{q}(M, \mathcal{Q}^{r,p}) = 0$ $q \ge 1$.

Lemma. $H^q(M, \mathcal{G}^{r,p}) = 0, q \ge 1.$

By this lemma we obtain the following

Theorem 1.1.

$$H^{p}(M, \Omega^{r}) \cong \frac{\{\varphi \in H^{0}(M, \mathcal{G}^{r,p}) \mid \bar{\partial}\varphi = 0\}}{\bar{\partial}H^{0}(M, \mathcal{G}^{r,p-1})}$$

for p>1. Further

$$H^p(M,\Omega^r)=0$$

for $p \ge n+1$.

We note that in case N is a Stein manifold, by the result of B. Jennane [2], $H^p(M, \Omega^r) = 0$ for $p \ge 2$.

2. We shall apply the result of 1 to the calculation of $\bar{\partial}$ cohomology of toroidal groups which was partly shown in [3] and [5].

Let G be a toroidal group of complex dimension n, that is, G is a connected complex Lie group without nonconstant global holomorphic functions. Then we may assume $G=C^n/\Gamma$, where Γ is a discrete lattice of C^n generated by R-linearly independent vectors $\{e_1, e_2, \cdots, e_n, v_1 = (v_{11}, \cdots, v_{1n}), v_2 = (v_{21}, \cdots, v_{2n}), \cdots, v_q = (v_{q1}, \cdots v_{qn})\}$ over Z and e_i denotes the i-th unit vector of C^n . Moreover we may assume det $[\Im u_{ij}; 1 \le i, j \le q] \ne 0$, where $\Im v_{ij}$ is the imaginary part of v_{ij} . We denote by π the projection $C^n \ni (z^1, \cdots, z^n) \mapsto (z^1, \cdots, z^q) \in C^q$. Since $\pi(e_i)$, $\pi(v_i)$ $(1 \le i \le q)$ are R-linearly independent π induces the C^{*n-q} -principal bundle

$$\pi: \mathbb{C}^n/\Gamma \ni z + \Gamma \mapsto \pi(z) + \Gamma^* \in \mathbb{T}_C^q := \mathbb{C}^q/\Gamma^*$$

over the complex q dimensional torus T_c^q , where $\Gamma^*:=\pi(\Gamma)$. Then, the sheaves $\mathcal{Z}^{r,p}$ on \mathbb{C}^n/Γ over T_c^q are defined for $0 \le r \le n$ and $0 \le p \le q$. We have $H^p(\mathbb{C}^n/\Gamma, \Omega^r) \cong \{\varphi \in H^0(\mathbb{C}^n/\Gamma, \mathcal{Z}^{r,p}) \mid \bar{\partial}\varphi = 0\}/\bar{\partial}H^0(\mathbb{C}^n/\Gamma, \mathcal{Z}^{r,p-1}) \text{ for } p \ge 1$. (z^1, \dots, z^n) defines a local coordinate in \mathbb{C}^n/Γ and

(2.1)
$$f \in H^0(\mathbb{C}^n/\Gamma, \mathfrak{F}) \text{ means } \frac{\partial f}{\partial \overline{z}^i} = 0 \text{ for } q+1 \le i \le n.$$

We put $v_i := \sqrt{-1} \, e_i$ for $q+1 \le i \le n$ and $(z^1, \cdots, z^n) = \sum_{i=1}^n (t^i e_i + t^{n+i} v_i)$. The isomorphism $C^n \ni (z^1, \cdots, z^n) \mapsto (t^1, \cdots, t^{2n}) \in \mathbb{R}^{2n}$ induces the isomorphism $C^n/\Gamma \cong T^{n+q} \times \mathbb{R}^{n-q}$ as a real Lie group, where T^{n+q} is a real (n+q) dimensional real torus. For $1 \le i_1 < \cdots < i_r \le n$ and $1 \le j_1 < \cdots < j_p \le q$, put $I := (i_1, \cdots, i_r)$ and $J := (j_1, \cdots, j_p)$, respectively. Let $\varphi = \sum_{I,J} \varphi_{IJ} dz^I \wedge d\bar{z}^J \in H^0(C^n/\Gamma, \mathcal{G}^{r,p})$ be a $\bar{\partial}$ -closed form. For each I, $\varphi_I = \sum_J \varphi_{IJ} d\bar{z}^J$ is a $\bar{\partial}$ -

closed (0, p)-form in C^n/Γ . By the Fourier expansion and (2.1), we can write

$$egin{aligned} arphi_{IJ} &= \sum\limits_{m \in \mathbb{Z}^{n+q}} arphi_{IJ}^m(t) \ &= \sum\limits_{m \in \mathbb{Z}^{n+q}} c_{IJ}^m \exp\left(-2\pi \sum\limits_{i=q+1}^n m_i t^{n+i}
ight) \exp\left(2\pi \sqrt{-1} \langle m,t'
angle) \end{aligned}$$

and $\varphi_I = \sum_{m \in \mathbb{Z}^{n+q}} \varphi_I^m = \sum_{m \in \mathbb{Z}^{n+q}} \sum_J \varphi_{IJ}^m d\bar{z}^J$, where c_{IJ}^m are constant and $\langle m, t' \rangle$:= $\sum_{i=1}^{n+q} m_i t^i$. From the similar argument to [3], we have the constant from $\sum_J c_{IJ}^0 d\bar{z}^J$ and $\psi_I^m = \sum_{J'} \psi_{IJ'}^m d\bar{z}^{J'} \in H^0(\mathbb{C}^n/\Gamma, \mathcal{G}^{0,p-1})$, where $J' = (j_1, \cdots, j_{p-1})$ for each $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ such that $\varphi_I^m = \bar{\partial} \psi_I^m$ and $\varphi_I = \sum_J c_{IJ}^0 d\bar{z}^J + \sum_{m \in \mathbb{Z}^{n+q}} \bar{\partial} \psi_I^m$. Put $\psi^m := (-1)^r \sum_{I,J'} \psi_{IJ'}^m dz^I \wedge d\bar{z}^{J'}$ for each $m \in \mathbb{Z}^{n+q} \setminus \{0\}$, we have

$$\varphi \!=\! \sum\limits_{I,J} c_{IJ}^{\scriptscriptstyle 0} dz^{\scriptscriptstyle I} \! \wedge \! dar{z}^{\scriptscriptstyle J} \! + \sum\limits_{\scriptscriptstyle m \, \in \, oldsymbol{Z}^{\scriptscriptstyle n+q\setminus\{0\}}} ar{\partial} \psi^m.$$

 $\psi := \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \psi^m$ is a formal solution of $\bar{\partial}$ -problem for the $\bar{\partial}$ -closed form $\varphi - \sum_{I,J} c_{IJ}^n dz^I \wedge d\bar{z}^J$. Then similarly to [3] and [4], we obtain

Theorem 2.1. Let C^n/Γ be a toroidal group, where Γ is a discrete lattice of C^n generated by R-linearly independent vectors $\{e_1, e_2, \dots, e_n, v_1, v_2, \dots, v_q\}$, $K_{m,i} := \sum_{j=1}^n v_{ij}m_j - m_{n+i}$ and $K_m := \max\{|K_{m,i}|; 1 \le i \le q\}$ for $m \in \mathbb{Z}^{n+q}$. Then the following statements (1), (2), (3), and (4) are equivalent.

(1) There exists a>0 such that

$$\sup_{m\neq 0} \exp\left(-a\|m^*\|\right)/K_m < \infty,$$

where $||m^*|| = \max\{|m_i|; 1 \le i \le n\}$.

- (2) $H^p(\mathbb{C}^n/\Gamma, \Omega^r) \cong \mathbb{C}\{dz^I \wedge d\bar{z}^J | I = (i_1, \dots, i_r), J = (j_1, \dots, j_p), \\ 1 \leq i_1 < \dots < i_r \leq n, \quad and \quad 1 \leq j_1 < \dots < j_p \leq q\}, \\ for \ p \geq 1, \ r = 0, 1, \dots, n. \quad Then \ \dim H^p(\mathbb{C}^n/\Gamma, \Omega^r) = \binom{n}{r}\binom{q}{p}.$
- (3) $H^p(\mathbb{C}^n/\Gamma, \Omega^r)$ are Hausdorff locally convex spaces.
- (4) $\bar{\partial}H^0(C^n/\Gamma, \mathcal{G}^{r,p-1})$ is a closed subspace of the Frechet space $H^0(C^n/\Gamma, \mathcal{G}^{r,p})$ for p>1.

Corollary 2.1. Every toroidal group C^n/Γ satisfies either of the following statements (a) and (b).

- (a) $H^p(\mathbb{C}^n/\Gamma, \Omega^r)$ is finite dimensional for any p and $0 \le r \le n$.
- (b) $H^p(C^n/\Gamma, \Omega^r)$ is a non-Hausdorff locally convex space for $1 \le p \le q$ and 0 < r < n.

Remark. C. Vogt [5] showed the equivalence of (1) and (2) in the above theorem by Dolbeault theory. In the previous paper [3] we obtained the above theorem and corollary in case r=0.

References

- [1] L. Bungart: Holomorphic functions with values in locally convex spaces and applications to integral formulas. Trans. Amer. Math. Soc., 111, 317-344 (1964).
- [2] B. Jennane: Groupes de cohomologie d'un fibré holomorphe à base et à fibre de Stein. Inventiones Math., 54, 75-79 (1979).
- [3] H. Kazama: $\bar{\partial}$ Cohomology of (H,C)-groups. Publ. RIMS, Kyoto Univ., 20, 297–317 (1984).
- [4] H. Kazama and T. Umeno: $\bar{\theta}$ Cohomology of complex Lie groups. ibid., 26, 473-484 (1990).
- [5] C. Vogt: Two remarks concerning toroidal groups. Manuscripta Math., 41, 217–232 (1983).