38. On the Sums of Digits in Integers

By Hiroyuki Kano
Department of Mathematics, Faculty of Science and Technology, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., May 13, 1991)

Let $r \geqq 2$ be a given integer and let

$$
n=a_{k} a_{k-1} \cdots a_{0}=a_{k} r^{k}+a_{k-1} r^{k-1}+\cdots+a_{0}, \quad a_{h} \in\{0,1, \cdots, r-1\}
$$

be the r-adic expansion of a nonnegative integer n. We define the sum of digit function

$$
S_{r}(n)=a_{k}+a_{k-1}+\cdots+a_{0} .
$$

This function has been studied by many authors (cf. Stolarsky [2]).
Clements and Lindström [1] proved the following formula:

$$
\sum_{m \leqq n} s_{2}(m)=\log _{2}\left|\operatorname{det} A_{2}(n)\right| \quad(n=0,1,2, \cdots),
$$

where

$$
A_{2}(n)=\left(a_{i j}\right)_{0 \leq i, j \leqq n}, \quad a_{i j}=(-1)^{\alpha i j},
$$

and $\alpha_{i j}$ is the number of common terms $b_{h}=c_{h}=1$ in the dyadic expansions $i=\sum_{h \geq 0} b_{n} 2^{h}$, and $j=\sum_{h \geq 0} c_{h} 2^{h}$. In the present paper, we generalize this formula for any given base $r \geqq 2$.

We first define a matrix $A_{r}(n)$ for a given integer $r \geqq 2$ and any nonnegative integer n. We choose any real number ρ satisfying $1<\rho \leqq 2^{1 /(r-1)}$ and define a complex number $\zeta=\zeta(\rho)$ by

$$
|\zeta|=1, \quad|\zeta-1|=\rho \quad \text { with } \quad \operatorname{Im} \zeta \geqq 0 .
$$

(If $r=2$, we can choose $\rho=2$ and so $\zeta=-1$.) Then we choose real numbers $\beta_{h}=\beta_{h}(\rho)(h=1,2, \cdots, r-1)$ such that

$$
\left|\zeta^{\beta_{n}}-1\right|=\rho^{h} \quad \text { with } \quad 1=\beta_{1}<\beta_{2}<\cdots \beta_{r-1} \leqq \frac{\pi}{\rho} .
$$

Let $i=\sum_{h \geqq 0} b_{h} r^{h}$ and $j=\sum_{h \geqq 0} c_{h} r^{h}$ be the r-adic expansions of nonnegative integers i and j, and put

$$
A_{r}(n)=\left(a_{i j}\right)_{0 \leq i, j \leq n}, \quad a_{i j}=\zeta^{\beta_{i j}}
$$

where

$$
\beta_{i j}=\sum_{h \geqq 0, b_{h}=c_{h} \neq 0} \beta_{b_{h}} .
$$

Theorem. We have

$$
\sum_{m \leq n} s_{r}(m)=\log _{\rho}\left|\operatorname{det} A_{r}(n)\right| \quad(n=0,1,2, \cdots)
$$

Proof. For any integer $n \geqq 0$ we write
(1) $\quad n=h r^{k}+m \quad\left(k, h, m \in Z, k \geqq 0,0 \leqq h<r, 0 \leqq m<r^{k}\right)$.

If we put $f(n)=\sum_{m \leqq n} s_{r}(m)$, then we have

$$
\begin{equation*}
f(n)=f\left(h r^{k}+m\right)=h f\left(r^{k}-1\right)+\frac{h(h-1)}{2} r^{k}+h(m+1)+f(m) . \tag{2}
\end{equation*}
$$

Conversely, this formula (2) defines the function $f(n)(n \geqq 0)$ uniquely
under the condition
(3)

$$
f(0)=0 .
$$

Hence it is enough to show that the function

$$
f(n)=\log _{\rho}\left|\operatorname{det} A_{r}(n)\right| \quad(n \geqq 0)
$$

satisfies (2) and (3). The proof will be carried out by induction on n.
First if $k=0$ in (1), then $0 \leqq n=h<r$ and so (2) with (3) implies

$$
f(h)=\frac{h(h-1)}{2} \quad(0 \leqq h<r) .
$$

On the other hand, we have by the definition of $A_{r}(h)$ with $0 \leqq h<r$.

$$
A_{r}(h)=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \zeta^{\beta_{1}} & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \cdots & \zeta^{\beta_{n}}
\end{array}\right)
$$

Hence we obtain

$$
\left|\operatorname{det} A_{r}(h)\right|=\prod_{k=1}^{h}\left|\zeta^{\beta_{k}}-1\right|=\rho^{h(h+1) / 2} \quad(1 \leqq h<r), \quad \operatorname{det} A(0)=1 .
$$

Now let $k \geqq 1$. We assume that (2) holds for all $n=h r^{k-1}+m(0 \leqq h<r$, $\left.0 \leqq m<r^{k}\right)$. By definition, we have, for any integers $b(0 \leqq b<r)$ and i, j $\left(0 \leqq i, j<r^{k}\right)$,

$$
\beta_{b r^{k}+i, j}=\beta_{i, j}=\beta_{i, b r^{k}+j}, \quad \beta_{b r^{k}+i, b r^{k}+j}=\beta_{b}+\beta_{i, j},
$$

so that

$$
A_{r}\left(h r^{k}+m\right)=\left(\begin{array}{llll}
B & B & \cdots & B \\
B & \zeta^{\beta_{1}} B & \cdots & B \\
\vdots & C \\
\vdots & \vdots & & \vdots \\
B & B & \cdots & \zeta^{\beta_{n-1}} B \\
C \\
D & D & \cdots & D
\end{array} \zeta^{\beta_{n}} A_{r}(m) .\right.
$$

where $B=A_{r}\left(r^{k}-1\right), C$ is the $r^{k} \times(m+1)$-matrix consisting of the first $m+1$ columns of B, and D is the $(m+1) \times r^{k}$-matrix consisting of the first $m+1$ rows of B. Hence

$$
\operatorname{det} A_{r}\left(h r^{k}+m\right)=\operatorname{det}\left(\begin{array}{cccc|c}
B & & & \\
B & \left(\zeta^{\beta_{1}}-1\right) B & 0 & 0 \\
\vdots & & \ddots & \\
B & 0 & \ddots\left(\zeta^{\beta_{n-1}}-1\right) B & \\
\hline D & 0 & & \left(\zeta^{\left.\beta_{n}-1\right) A_{r}(m)}\right.
\end{array}\right)
$$

Therefore we obtain

$$
\left|\operatorname{det} A_{r}\left(h r^{k}+m\right)\right|=\left|\zeta^{\beta_{1}}-1\right|^{r^{k}} \cdots\left|\zeta^{\beta_{n-1}}-1\right|^{r^{k}}\left|\zeta^{\beta_{n}}-1\right|^{n+1}\left|\operatorname{det} A_{r}\left(r^{k}-1\right)\right|^{h}\left|\operatorname{det} A_{r}(m)\right|
$$

$$
=\rho^{((h+1) / 2) r^{k}+h(m+1)}\left|\operatorname{det} A_{r}\left(r^{k}-1\right)\right|^{h}\left|\operatorname{det} A_{r}(m)\right| .
$$

This completes the proof of the theorem.
Acknowledgement. We thank Prof. I. Shiokawa for his valuable suggestions which have improved this paper.

References

[1] G. F. Clements and B. Lindström: A sequence of (土)-determinants with large values. Proc. AMS., 16, 548-550 (1965).
[2] K. B. Stolarsky: Power and exponential sums of digital sums related to binomial coefficient parity. SIAM J. Appl. Math., 32, 717-730 (1977).

