37. A Note on Poincaré Sums of Galois Representations

By Takashi Ono

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., May 13, 1991)

This note is a fruit of recent conversations with Mr. Morishita on building non-abelian Kummer theory after the model of Weil [6].

Let k be any field, K be a finite Galois extension of k and ρ be a krepresentation of the Galois group G = G(K/k). Denote by K_{ρ} the intermediate field of the extension K/k which corresponds to the subgroup Ker ρ of G by Galois theory. In this paper, we shall supply an elementary construction of K_{ρ} over k which works simultaneously for all ρ 's ((2.6) Theorem). When the characteristic of k is zero, we shall rewrite everything in terms of the character χ of ρ (§ 3).

§ 1. $g(\theta)$. Notation being as above, consider the following elements in the group ring K[G]:

$$(1.1) g(x) = \sum_{s \in G} x^s s, x \in K^{(1)}.$$

We want to find $x \in K$ such that $g(x) \in K[G]^{\times}$, the group of invertible elements of the ring K[G]. Let us call a $\theta \in K$ a normal basis element if the set $\{\theta^s ; s \in G\}$ forms a normal basis for K/k.

(1.2) Proposition. If $\theta \in K$ is a normal basis element for K/k, then $g(\theta) \in K[G]^{\times}$.

Proof. Let
$$u = \sum_{t} x_{t}t$$
 with unknown $x_{t} \in K$. We have
 $g(\theta)u = \sum_{s} \theta^{s}s \sum_{t} x_{t}t = \sum_{s,t} \theta^{st-1}x_{t}s$
 $= \sum_{s} (\sum_{t} \theta^{st-1}x_{t})s.$

Since det $(\theta^{st-1}) \neq 0$, 2) one finds $x_t, t \in G$, so that

$$\sum_{t} \theta^{st^{-1}} x_t = \begin{cases} 1 & \text{if } s = 1, \\ 0 & \text{if } s \neq 1. \end{cases}$$

Hence $g(\theta)u=1$, i.e., $u=\sum_{t} x_{t}t$ is a right inverse of $g(\theta)$ in K[G]. Similarly, one finds a left inverse v of $g(\theta)$. Since u=v by the associativity of multiplication in K[G], $g(\theta)$ is an invertible element. Q.E.D.

§ 2. $P_{\rho}(\theta)$. K, k, G being as before, let ρ be a k-representation of G of degree n:

$$(2.1) \qquad \rho: G \longrightarrow GL_n(k)$$

The map ρ extends, by K-linearity, to a K-representation, written still by ρ , of the ring K[G]:

¹⁾ If $x \in K$ and $s \in G$, then the action of s on x will be denoted by sx or x^s . Since we use the convention s(tx) = (st)x, $t \in G$, we have $(x^t)^s = x^{st}$.

²⁾ As for basic facts on normal bases, see [3, pp. 290-295].

T. ONO

$$(2.2) \qquad \rho \colon K[G] \longrightarrow M_n(K).$$

Now we have the *Poincaré sum* for ρ :

(2.3)
$$P_{\rho}(x) \stackrel{\text{def}}{=} \rho(g(x)) = \sum_{s \in G} x^{s} \rho(s), \qquad x \in K,$$

where g(x) is defined by (1.1).

(2.4) Theorem. If θ is a normal basis element for K/k, then $P_{\rho}(\theta) \in GL_n(K)$ and $\rho(s) = P_{\rho}(\theta)P_{\rho}(\theta)^{-s}$.

Proof. By (1.2), there is a $u \in K[G]$ such that $g(\theta)u=1$. Hence $1 = \rho(g(\theta))\rho(u) = P_{\rho}(\theta)\rho(u)$ which implies that $P_{\rho}(\theta) \in GL_n(K)$. Next, putting $P = P_{\rho}(\theta)$, we have

$$\rho(s)P^{s} = \rho(s)(\sum_{t} \theta^{t} \rho(t))^{s} = \rho(s) \sum_{t} \theta^{st} \rho(t)$$
$$= \sum_{t} \theta^{st} \rho(st) = \sum_{t} \theta^{t} \rho(t) = P.^{3}$$
Q.E.D.

If $\rho': G \rightarrow GL_n(k)$ is another k-representation, we can speak of the equivalence:

(2.5)
$$\rho_{\widetilde{k}} \rho' \quad \text{if } \rho'(s) = U \rho(s) U^{-1}, \quad U \in GL_n(k).$$

For ρ , we denote by K_{ρ} the intermediate field of K/k which corresponds to Ker ρ by Galois theory.

(2.6) Theorem. Let θ be any normal basis element for a Galois extension K/k. Then we have $K_{\rho} = k(P_{\rho}(\theta))$. In particular, $K_{\rho} = K_{\rho'}$ if $\rho_{\widetilde{k}} \rho'$.

Proof. Let H be the subgroup of G corresponding to the field k(P), $P = P_{\rho}(\theta)$. Then, by (2.4), we have, for $s \in G$,

$$s \in H \Longleftrightarrow P^s = P \Longleftrightarrow \rho(s) = 1 \Longleftrightarrow s \in \operatorname{Ker} \rho,$$

which proves that $K_{\rho} = k(P)$. Furthermore, since Ker $\rho = \text{Ker } \rho'$ if $\rho_{\widetilde{k}} \rho'$, we have $K_{\rho} = K_{\rho'}$. Q.E.D.

§ 3. Characteristic zero case. From now on, assume that the characteristic of k is zero. Denote by χ the character of a k-representation ρ of G ((2.1)) and also the character of the extended K-representation ρ of K[G] ((2.2)). On taking the trace of each matrix in (2.3), we are led to

(3.1)
$$P_{\chi}(x) \stackrel{\text{def}}{=} \chi(g(x)) = \sum_{s \in G} x^{s} \chi(s), \qquad x \in K,$$

and obtain

(3.2) Theorem. For any normal basis element θ for K/k, we have $K_{\rho} = k(P_{\chi}(\theta))$. In particular, $P_{\chi}(\theta) \neq 0$ if χ is nontrivial.⁴)

Proof. Clearly $k(P_{\mathfrak{z}}(\theta)) \subset k(P_{\mathfrak{g}}(\theta)) = K_{\mathfrak{g}}$ by (2.6). The other inclusion $k(P_{\mathfrak{z}}(\theta)) \supset K_{\mathfrak{g}}$ follows from implications below:

$$P_{\chi}(\theta)^{s} = P_{\chi}(\theta) \Longleftrightarrow \sum_{t \in G} \theta^{st} \chi(t) = \sum_{t \in G} \theta^{t} \chi(t)$$
$$\Longleftrightarrow \chi(s^{-1}t) = \chi(t) \quad \text{for all } t \in G$$
$$\Longrightarrow \chi(s) = \chi(1) \Longleftrightarrow s \in \text{Ker } \rho,$$

4) χ is trivial \iff Ker $\rho = G$.

146

³⁾ Note that we did not appeal to ready-made "Hilbert 90" for each 1-cocycle ρ separately. On the other hand, Hilbert 90 deals with arbitrary 1-cocycle (not a homomorphism) and so our method does not work immediately to prove the invertibility of Poincaré sums for general 1-cocycles (see [5, p. 159]).

where we used that $\{\theta^s ; s \in G\}$ is a basis for K/k and that the characteristic is zero (see [1, p. 35]). Q.E.D.

(3.3) Remark. In view of (3.2) we can write K_{χ} for K_{ρ} , i.e., $K_{\chi} = k(P_{\chi}(\theta))$. § 4. Examples and comments. (4.1) (Cyclotomic extension). Let k=Q, $K=k(\zeta)$, $\zeta=a$ primitive *l*th root of 1, *l* being a prime $\neq 2$. ζ is a normal basis element for K/k. We have $G \approx F_{i}^{\times}$. The unique character χ of G of order 2 is identified with the Legendre character of F_{i}^{\times} . We have

Poincaré sum $P_{z}(\zeta) = \sum_{s \in G} \zeta^{s} \chi(s) = \sum_{x \in F_{i}^{\times}} \zeta^{x}(x/l)$, the Gauss sum, and $K_{z} = Q(P_{z}(\zeta)) = Q(\sqrt{l^{*}}), \ l^{*} = (-1)^{(l-1)/2} l.$

(4.2) (Cyclic Kummer extension). Assume that k contains a primitive nth root ζ of 1.⁵⁾ Let K/k be a cyclic extension of degree n with $G = \langle s \rangle$, θ be any normal basis element for K/k and χ the linear character of G defined by $\chi(s) = \zeta$. We have

Poincaré sum $P_{\chi}(\theta) = \sum_{i=0}^{n-1} \theta^{s_i} \zeta^i = (\theta, \zeta)$, the Lagrange resolvent. Since Ker $\chi = 1$, we have $K = K_{\chi} = k((\theta, \zeta))$; furthermore, as $\chi(s) = \zeta = (\theta, \zeta)^{1-s}$ by (2.4), we have $(\theta, \zeta)^n = a \in k$, i.e., $K = k(\sqrt[n]{a})$.

(4.3) (Regular representation). Let K/k be any Galois extension⁵⁾ and ρ be the regular representation of G. ρ is a k-representation; in fact, a Q-representation, and Ker $\rho=1$, i.e., $K_x=K_\rho=K$. For a normal basis element θ for K/k, we have $P_x(\theta)=n\theta$, n=[K:k].

(4.4) (χ 's parametrize all normal subextensions of K/k). (4.3) enables us to find a k-representation ρ of G such that $L = K_{\chi}$ for a given normal subextension L/k of K/k. In fact, let N be the normal subgroup of G corresponding to L, r be the regular representation of G/N and ρ be the k-representation of G obtained naturally:

$$\rho: G \longrightarrow G/N \xrightarrow{\prime} GL_m(k), \qquad m = [L:k].$$

As Ker r=1, we have Ker $\rho=N$ and hence $L=K_{\chi}$.

References

- [1] Feit, W.: Characters of Finite Groups. Benjamin, New York-Amsterdam (1967).
- [2] Iwasawa, K.: Daisukansuron. Theory of Algebraic Functions. Iwanami, Tokyo (1952) (in Japanese).
- [3] Jacobson, N.: Basic Algebra. I. W. H. Freeman and Company, New York (1985).
- [4] Morishita, M.: A Note on Non-abelian Kummer-Iwasawa Theory (unpublished).
- [5] Serre, J.-P.: Corps Locaux. Hermann, Paris (1962).
- [6] Weil, A.: Généralisation des fonctions abéliennes. P. et App., (IX) 17, pp. 47– 87 (1938).