37. A Note on Poincaré Sums of Galois Representations

By Takashi Ono
Department of Mathematics, The Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., May 13, 1991)

This note is a fruit of recent conversations with Mr. Morishita on building non-abelian Kummer theory after the model of Weil [6].

Let k be any field, K be a finite Galois extension of k and ρ be a k representation of the Galois group $G=G(K / k)$. Denote by K_{ρ} the intermediate field of the extension K / k which corresponds to the subgroup Ker ρ of G by Galois theory. In this paper, we shall supply an elementary construction of K_{ρ} over k which works simultaneously for all ρ 's ((2.6) Theorem). When the characteristic of k is zero, we shall rewrite everything in terms of the character χ of ρ (§3).
§ 1. $\boldsymbol{g}(\boldsymbol{\theta})$. Notation being as above, consider the following elements in the group ring $K[G]$:

$$
\begin{equation*}
g(x)=\sum_{s \in G} x^{s} s, \quad x \in K .{ }^{1)} \tag{1.1}
\end{equation*}
$$

We want to find $x \in K$ such that $g(x) \in K[G]^{\times}$, the group of invertible elements of the ring $K[G]$. Let us call a $\theta \in K$ a normal basis element if the set $\left\{\theta^{s} ; s \in G\right\}$ forms a normal basis for K / k.
(1.2) Proposition. If $\theta \in K$ is a normal basis element for K / k, then $g(\theta)$ $\in K[G]^{\times}$.

Proof. Let $u=\sum_{t} x_{t} t$ with unknown $x_{t} \in K$. We have

$$
\begin{aligned}
g(\theta) u & =\sum_{s} \theta^{s} s \sum_{t} x_{t} t=\sum_{s, t} \theta^{s t-1} x_{t} s \\
& =\sum_{s}\left(\sum_{t} \theta^{s t-1} x_{t}\right) s .
\end{aligned}
$$

Since $\operatorname{det}\left(\theta^{s t-1}\right) \neq 0,{ }^{2}$ one finds $x_{t}, t \in G$, so that

$$
\sum_{t} \theta^{s t-1} x_{t}= \begin{cases}1 & \text { if } s=1 \\ 0 & \text { if } s \neq 1\end{cases}
$$

Hence $g(\theta) u=1$, i.e., $u=\sum_{t} x_{t} t$ is a right inverse of $g(\theta)$ in $K[G]$. Similarly, one finds a left inverse v of $g(\theta)$. Since $u=v$ by the associativity of multiplication in $K[G], g(\theta)$ is an invertible element. Q.E.D.
§ 2. $\boldsymbol{P}_{\rho}(\theta) . \quad K, k, G$ being as before, let ρ be a k-representation of G of degree n :

$$
\begin{equation*}
\rho: G \longrightarrow G L_{n}(k) . \tag{2.1}
\end{equation*}
$$

The map ρ extends, by K-linearity, to a K-representation, written still by ρ, of the ring $K[G]$:

[^0]\[

$$
\begin{equation*}
\rho: K[G] \longrightarrow M_{n}(K) \tag{2.2}
\end{equation*}
$$

\]

Now we have the Poincaré sum for ρ :

$$
\begin{equation*}
P_{\rho}(x) \stackrel{\text { def }}{=} \rho(g(x))=\sum_{s \in G} x^{s} \rho(s), \quad x \in K \tag{2.3}
\end{equation*}
$$

where $g(x)$ is defined by (1.1).
(2.4) Theorem. If θ is a normal basis element for K / k, then $P_{\rho}(\theta) \in$ $G L_{n}(K)$ and $\rho(s)=P_{\rho}(\theta) P_{\rho}(\theta)^{-s}$.

Proof. By (1.2), there is a $u \in K[G]$ such that $g(\theta) u=1$. Hence $1=$ $\rho(g(\theta)) \rho(u)=P_{\rho}(\theta) \rho(u)$ which implies that $P_{\rho}(\theta) \in G L_{n}(K)$. Next, putting $P=$ $P_{\rho}(\theta)$, we have

$$
\begin{array}{rlr}
\rho(s) P^{s} & =\rho(s)\left(\sum_{t} \theta^{t} \rho(t)\right)^{s}=\rho(s) \sum_{t} \theta^{s t} \rho(t) \\
& =\sum_{t} \theta^{s t} \rho(s t)=\sum_{t} \theta^{t} \rho(t)=P . .^{3)} \quad \text { Q.E.D. }
\end{array}
$$

If $\rho^{\prime}: G \rightarrow G L_{n}(k)$ is another k-representation, we can speak of the equivalence:

$$
\begin{equation*}
\rho \widetilde{k} \rho^{\prime} \quad \text { if } \rho^{\prime}(s)=U \rho(s) U^{-1}, \quad U \in G L_{n}(k) \tag{2.5}
\end{equation*}
$$

For ρ, we denote by K_{ρ} the intermediate field of K / k which corresponds to Ker ρ by Galois theory.
(2.6) Theorem. Let θ be any normal basis element for a Galois extension K / k. Then we have $K_{\rho}=k\left(P_{\rho}(\theta)\right)$. In particular, $K_{\rho}=K_{\rho^{\prime}}$ if $\rho \widetilde{k} \rho^{\prime}$.

Proof. Let H be the subgroup of G corresponding to the field $k(P)$, $P=P_{\rho}(\theta)$. Then, by (2.4), we have, for $s \in G$,

$$
s \in H \Longleftrightarrow P^{s}=P \Longleftrightarrow \rho(s)=1 \Longleftrightarrow s \in \operatorname{Ker} \rho
$$

which proves that $K_{\rho}=k(P)$. Furthermore, since $\operatorname{Ker} \rho=\operatorname{Ker} \rho^{\prime}$ if $\rho \widetilde{k} \rho^{\prime}$, we have $K_{\rho}=K_{\rho^{\prime}}$.
Q.E.D.
§3. Characteristic zero case. From now on, assume that the characteristic of k is zero. Denote by χ the character of a k-representation ρ of $G((2.1))$ and also the character of the extended K-representation ρ of $K[G]$ ((2.2)). On taking the trace of each matrix in (2.3), we are led to

$$
\begin{equation*}
P_{\chi}(x) \stackrel{\operatorname{def}}{=} \chi(g(x))=\sum_{s \in G} x^{s} \chi(s), \quad x \in K \tag{3.1}
\end{equation*}
$$

and obtain
(3.2) Theorem. For any normal basis element θ for K / k, we have $K_{\rho}=$ $k\left(P_{\chi}(\theta)\right)$. In particular, $P_{\chi}(\theta) \neq 0$ if χ is nontrivial. ${ }^{4)}$

Proof. Clearly $k\left(P_{\underline{\underline{x}}}(\underline{\theta})\right) \subset k\left(P_{\underline{\rho}}(\underline{\theta})\right)=K_{\underline{\rho}}$ by (2.6). The other inclusion $k\left(P_{\chi}(\theta)\right) \supset K_{\rho}$ follows from implications below :

$$
\begin{aligned}
P_{\chi}(\theta)^{s}=P_{\chi}(\theta) & \Longleftrightarrow \sum_{t \in G} \theta^{s t} \chi(t)=\sum_{t \in G} \theta^{t} \chi(t) \\
& \Longleftrightarrow \chi\left(s^{-1} t\right)=\chi(t) \quad \text { for all } t \in G \\
& \Longleftrightarrow \chi(s)=\chi(1) \Longleftrightarrow s \in \operatorname{Ker} \rho,
\end{aligned}
$$

[^1]where we used that $\left\{\theta^{s} ; s \in G\right\}$ is a basis for K / k and that the characteristic is zero (see [1, p. 35]).
Q.E.D.
(3.3) Remark. In view of (3.2) we can write K_{χ} for K_{ρ}, i.e., $K_{x}=k\left(P_{\chi}(\theta)\right.$).
§4. Examples and comments. (4.1) (Cyclotomic extension). Let $k=\boldsymbol{Q}, K=k(\zeta), \zeta=a$ primitive l th root of $1, l$ being a prime $\neq 2$. ζ is a normal basis element for K / k. We have $G \approx \boldsymbol{F}_{l}^{\times}$. The unique character χ of G of order 2 is identified with the Legendre character of $\boldsymbol{F}_{l}^{\times}$. We have

Poincaré sum $P_{\chi}(\zeta)=\sum_{s \in G} \zeta^{s} \chi(s)=\sum_{x \in F_{l}^{\times}} \zeta^{x}(x / l)$, the Gauss sum, and $K_{x}=\boldsymbol{Q}\left(P_{x}(\zeta)\right)=\boldsymbol{Q}\left(\sqrt{l^{*}}\right), l^{*}=(-1)^{(l-1) / 2} l$.
(4.2) (Cyclic Kummer extension). Assume that k contains a primitive nth root ζ of $1 .{ }^{5}$ Let K / k be a cyclic extension of degree n with $G=\langle s\rangle, \theta$ be any normal basis element for K / k and χ the linear character of G defined by $\chi(s)=\zeta$. We have

Poincaré sum $P_{\chi}(\theta)=\sum_{i=0}^{n-1} \theta^{s i} \zeta^{i}=(\theta, \zeta)$, the Lagrange resolvent.
Since $\operatorname{Ker} \chi=1$, we have $K=K_{\chi}=k((\theta, \zeta))$; furthermore, as $\chi(s)=\zeta=(\theta, \zeta)^{1-s}$ by (2.4), we have $(\theta, \zeta)^{n}=a \in k$, i.e., $K=k(\sqrt[n]{a})$.
(4.3) (Regular representation). Let K / k be any Galois extension ${ }^{5)}$ and ρ be the regular representation of $G . \quad \rho$ is a k-representation; in fact, a \boldsymbol{Q} representation, and $\operatorname{Ker} \rho=1$, i.e., $K_{x}=K_{\rho}=K$. For a normal basis element θ for K / k, we have $P_{\chi}(\theta)=n \theta, n=[K: k]$.
(4.4) (χ 's parametrize all normal subextensions of K / k). (4.3) enables us to find a k-representation ρ of G such that $L=K_{x}$ for a given normal subextension L / k of K / k. In fact, let N be the normal subgroup of G corresponding to L, r be the regular representation of G / N and ρ be the k-representation of G obtained naturally :

$$
\rho: G \longrightarrow G / N \xrightarrow{r} G L_{m}(k), \quad m=[L: k] .
$$

As $\operatorname{Ker} r=1$, we have $\operatorname{Ker} \rho=N$ and hence $L=K_{\chi}$.

References

[1] Feit, W.: Characters of Finite Groups. Benjamin, New York-Amsterdam (1967).
[2] Iwasawa, K.: Daisukansuron. Theory of Algebraic Functions. Iwanami, Tokyo (1952) (in Japanese).
[3] Jacobson, N.: Basic Algebra. I. W. H. Freeman and Company, New York (1985).
[4] Morishita, M.: A Note on Non-abelian Kummer-Iwasawa Theory (unpublished).
[5] Serre, J.-P.: Corps Locaux. Hermann, Paris (1962).
[6] Weil, A.: Généralisation des fonctions abéliennes. P. et App., (IX) 17, pp. 4787 (1938).

[^2]
[^0]: ${ }^{1)}$ If $x \in K$ and $s \in G$, then the action of s on x will be denoted by $s x$ or x^{s}. Since we use the convention $s(t x)=(s t) x, t \in G$, we have $\left(x^{t}\right)^{s}=x^{s t}$.
 ${ }^{2)}$ As for basic facts on normal bases, see [3, pp. 290-295].

[^1]: ${ }^{3)}$ Note that we did not appeal to ready-made "Hilbert 90 " for each 1-cocycle ρ separately. On the other hand, Hilbert 90 deals with arbitrary 1-cocycle (not a homomorphism) and so our method does not work immediately to prove the invertibility of Poincaré sums for general 1-cocycles (see [5, p. 159]).
 4) χ is trivial \Longleftrightarrow Ker $\rho=G$.

[^2]: ${ }^{\text {s) }} \quad k$ is of characteristic zero.

