35. Fermat Motives and the Artin-Tate Formula. II

By Noriyuki SUWA

Department of Mathematics, Tokyo Denki University

(Communicated by Shokichi IYANAGA, M. J. A., May 13, 1991)

4. The Artin-Tate-Milne formula for Fermat motives. Throughout the section, $k=F_q$ of characteristic p and X denotes the Fermat variety of dimension n=2r and of degree m over k.

If *M* is a Γ -module, then M^{Γ} and M_{Γ} denote respectively the kernel and cokernel of $\varphi - 1 : M \rightarrow M$, where φ is the canonical generator of $\Gamma = \text{Gal}(\bar{k}/k)$.

If *M* is a finite group, |M| denotes its order. For a prime number *l*, $|l_{l}$ denotes the *l*-adic absolute value normalized so that $|l|_{l}^{-1} = l$.

For a $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$, we define $w^{r-1}(A) = \sum_{a \in A} \max(r - ||a||, 0)$.

Theorem 4.1 (The Artin-Tate-Milne formula I) (cf. [10], Ch. III. 2). Let M_A be the Fermat submotive of X, corresponding to a $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$. If M_A is not supersingular, then:

- (a) $H^n(M_A, Z_l(r)) = 0$ for each prime l with (l, mp) = 1;
- (b) $H^{n+1}(M_A, Z_l(r))$ is finite and $|H^{n+1}(M_A, Z_l(r))| = |P_A(1/q^r)|_l^{-1}$ for each prime l with (l, mp) = 1;
- (c) $H^{n}(M_{A}, Z_{p}(r)) = 0;$
- (d) $H^{n+1}(M_A, \mathbb{Z}_p(r))$ is finite and $|H^{n+1}(M_A, \mathbb{Z}_l(r))| = |P_A(1/q^r)|_p^{-1} \cdot q^{w^{r-1}(A)}$.

Combining the assertions of 4.1 with Iwasawa's theorem [12] and Remark 4.3, we obtain the following assertion:

Corollary 4.2. Assume that m is a prime ≥ 3 and that $k = F_q$ contains all the m-th roots of unity. Let M_A be a Fermat submotive of X, corresponding to a $(Z/m)^{\times}$ -orbit $A \subset \mathfrak{A}$. If M_A is not supersingular but of Hodge-Witt type, then

$$Nr_{\boldsymbol{Q}(\boldsymbol{\xi}_m)/\boldsymbol{Q}}\left(1-\frac{j(\boldsymbol{a})}{q^r}\right) = \prod_{\boldsymbol{a}\in\boldsymbol{A}}\left(1-\frac{j(\boldsymbol{a})}{q^r}\right) = \pm Bm^3/q^{w^{r-1}(\boldsymbol{A})},$$

where B is a positive integer which is a square, possibly multiplied by a divisor of 2m.

Remark 4.3. Let X be a smooth projective variety of dimension n=2rover k. Then the Bockstein operator $\beta: H^n(X, Q_l/Z_l(r)) \rightarrow H^{n+1}(X, Z_l(r))$ induces a bijection $\beta: H^n(X, Q_l/Z_l(r))_{\text{cotors}} \rightarrow H^{n+1}(X, Z_l(r))_{\text{tors}}$. We define a biadditive form on $H^{n+1}(X, Z_l(r))_{\text{tors}}$ with values in Q_l/Z_l by $\langle x, y \rangle = x \cap \beta^{-1}(y)$, where \cap denotes the cup-product pairing

 $H^{n+1}(X, Z_l(r)) \times H^n(X, Q_l/Z_l(r)) \longrightarrow Q_l/Z_l.$

Then \langle , \rangle is non-degenerate and skew-symmetric. Hence $|H^{n+1}(X, Z_l(r))_{tors}|$ is a square, or twice a square if l=2.

If M_A is a Fermat submotive of the Fermat variety X of dimension n=2r and of degree m and l is a prime with (l, m)=1, the pairing

[Vol. 67(A),

 $\langle , \rangle : H^{n+1}(X, Z_l(r))_{tors} \times H^{n+1}(X, Z_l(r))_{tors} \longrightarrow Q_l/Z_l$ induces a non-degenerate skew-symmetric pairing

 $\langle , \rangle; H^{n+1}(M_A, Z_l(r))_{\text{tors}} \times H^{n+1}(M_A, Z_l(r))_{\text{tors}} \longrightarrow Q_l/Z_l.$

Remark 4.4. Shioda has proved that if n=2, $p\equiv 1 \pmod{m}$ and M_A is not supersingular, then

$$Nr_{\boldsymbol{Q}(\boldsymbol{\zeta}_m)/\boldsymbol{Q}}\left(1-\frac{j(\boldsymbol{a})}{q}\right) = \prod_{\boldsymbol{a}\in A} \left(1-\frac{j(\boldsymbol{a})}{q}\right) = \pm Bm^3/q^{w^{\mathfrak{d}}(\boldsymbol{A})},$$

where B is a positive integer which is a square up to 2mp (cf. [4], Th. 7.1). In this case, M_A is ordinary. He also suggested the assertion of 4.2.

4.5. To analyze the case when M_A is a supersingular Fermat submotive of X, we recall Milne's argument ([14], Prop. 6.5 and Prop. 6.6).

Let $\theta_l \in H^1(k, Z_l) = Z_l$ be a canonical generator and let $\varepsilon_{l,A}$ denote the homomorphism $H^n(M_A, Z_l(r)) \rightarrow H^{n+1}(M_A, Z_l(r))$ defined by the cup-product with θ_l . Then the diagram

$$\begin{array}{c} H^{n}(M_{A}, Z_{l}(r)) \xrightarrow{\mathfrak{c}_{l,A}} H^{n+1}(M_{A}, Z_{l}(r)) \\ \downarrow^{\wr} & \uparrow \\ H^{n}(M_{A,\bar{k}}, Z_{l}(r))^{\Gamma} \longrightarrow H^{n}(M_{A,\bar{k}}, Z_{l}(r))_{\Gamma} \end{array}$$

is commutative. Here the vertical arrows are defined by the Hochschild-Serre spectral sequence

 $E_1^{rj} = H^r(\Gamma, H^j(M_{A,\bar{k}}, Z_l(r)) \Longrightarrow H^{r+j}(M_A, Z_l(r))$ and the horizontal arrow below is the composite of the obvious maps $H^n(M_{A,\bar{k}}, Z_l(r))^{\Gamma} \to H^n(M_{A,\bar{k}}, Z_l(r)) \text{ and } H^n(M_{A,\bar{k}}, Z_l(r)) \to H^n(M_{A,\bar{k}}, Z_l(r))_{\Gamma}.$

Theorem 4.6 (The Artin-Tate-Milne formula II). Assume that F_q contains all the m-th root of unity. Let M_A be a supersingular Fermat submotive of X.

(1) Let l be a prime with (l, mp) = 1. Then $H^{n+1}(M_A, Z_l(r))$ is torsion-free and all the maps in the diagram

are bijective.

 $(2) \quad \varepsilon_{p,A}: H^n(M_A, \mathbb{Z}_p(r)) \longrightarrow H^{n+1}(M_A, \mathbb{Z}_p(r)) \text{ is injective and} \\ |\det \varepsilon_{p,A}|_p^{-1} \cdot |H^{2r+1}(M_A, \mathbb{Z}_p(r))_{tors}| = q^{w^{r-1}(A)}.$

Corollary 4.7. Assume that M_A is ordinary and supersingular. Then $H^{n+1}(M_A, \mathbb{Z}_n(r))$ is torsion-free and all the maps in the diagram

are bijective.

4.8. Let $N^{r}(X)$ denote the image of the composite $CH^{r}(X) \rightarrow CH^{r}(X_{\bar{k}}) \rightarrow N^{r}(X_{\bar{k}})$.

136

Fermat Motives and the Artin-Tate Formula. II

Now we assume that

(1) The Tate conjecture holds true for X;

(2) The cycle map $CH^{r}(X) \otimes_{\mathbb{Z}} \mathbb{Z}_{l} \to H^{n}(X_{\bar{k}}, \mathbb{Z}_{l}(r))^{r}$ is surjective for all primes l with (l, m) = 1.

Proposition 4.9.1. Under the above assumptions, det $N^{r}(X)$ divides a power of mp. Moreover, if X is ordinary, i.e. $p \equiv 1 \pmod{m}$, det $N^{r}(X)$ divides a power of m.

Corollary 4.9.2. Under the above assumptions, det $N^r(X_{\bar{k}})$ divides a power of mp. Moreover, if X is ordinary, det $N^r(X_{\bar{k}})$ divides a power of m.

5. Examples. In this section, we assume that $k = F_q$ contains all the *m*-th roots of unity.

5.1. Let X be the Fermat surface of degree m over k. Then we have $CH^{1}(X_{\bar{k}}) = Pic(X_{\bar{k}}) = N^{1}(X_{\bar{k}}) = NS(X_{\bar{k}})$, the Néron-Severi group of $X_{\bar{k}}$, and $N^{1}(X) = NS(X) = NS(X_{\bar{k}})^{r}$. It is known that the Tate conjecture holds true for X (Tate [6], Shioda-Katsura [5]). Therefore the canonical maps $NS(X) \otimes_{\mathbb{Z}} \mathbb{Z}_{l} \to H^{2}(X, \mathbb{Z}_{l}(1))$ and $Br(X)_{l-\text{tors}} \to H^{3}(X, \mathbb{Z}_{l}(1))_{\text{tors}}$ are bijective for each prime l, and Br(X) is finite (Tate [18], Milne [13]). Here $Br(X) = H^{2}(X, \mathbb{G}_{m, X})$ denotes the Brauer group of X.

Theorem 5.2 (The Artin-Tate formula) ([10], Ch. IV. 2). Let X be the Fermat surface of degree m and M_A the Fermat submotive of X, corresponding to a $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$.

(I) Suppose that M_A is not supersingular. Then:

(a) $|Br(M_A)_{l-\text{tors}}| = \left| \prod_{a \in A} \left(1 - \frac{j(a)}{q} \right) \right|_l^{-1} for each prime l with <math>(l, mp) = 1.$

(b)
$$|Br(M_A)_{p-\operatorname{tors}}|/q^{w^0(A)} = \left|\prod_{\boldsymbol{a}\in A} \left(1 - \frac{j(\boldsymbol{a})}{q}\right)\right|_p^{-1}$$

(II) Suppose that M_A is supersingular. Then:

(a) $Br(M_A)_{l-\text{tors}} = 0$ and $|\det NS(M_A) \otimes_{\mathbb{Z}} \mathbb{Z}_l|_l = 1$ for each prime l with (l, mp) = 1.

(b) $|Br(M_A)_{p-\text{tors}}| |\det NS(M_A) \otimes_Z Z_p|_p^{-1} = q^{w^0(A)}$. (Note that $w^0(A) = \#\{a \in A; \|a\|=0\}$.)

Remark 5.3. The assertions for the *l*-part with (l, mp) = 1 in the above theorem are due to Shioda [4], Prop. 6.1.

Corollary 5.4. If X is ordinary, then det NS(X) and det $NS(X_{\bar{k}})$ divide a power of m.

Remark 5.5. If m=7 and $p\equiv 2$ or 4 (mod. 7), X is of Hodge-Witt type (but not ordinary). It is similarly seen that NS(X) and $NS(X_{\bar{k}})$ divide a power of m=7.

Remark 5.6. Shioda has proved that det NS(X) divides a power of mp for the Fermat surface X of degree m over F_q ([4], Cor. 6.3). He has also remarked that det $NS(X_{\bar{k}})$ divides a power of m if X is ordinary (loc. cit. Remark 6.4 and Addendum).

No. 5]

5.7. Let X be the Fermat variety of dimension $n=2r\geq 4$ and of degree m over k. It is known that the Tate conjecture holds true for X in the following cases:

(1) X is ordinary, i.e. $p \equiv 1 \pmod{m}$ and m is not divisible by any prime less than n+2;

(2) X is ordinary, i.e. $p \equiv 1 \pmod{m}$ and m is a prime or 4;

(3) X is supersingular, i.e. $p^{\nu} \equiv -1 \pmod{m}$ for some ν

(Shioda [15], [16], Shioda-Katsura [5], Aoki [11]).

Proposition 5.8. Let X be the Fermat variety of dimension $n=2r\geq 4$ and of degree m. Assume that (1) or (2) is satisfied. Then det $N^{r}(X)$ and det $N^{r}(X_{\overline{k}})$ divide a power of m.

Corollary 5.9. Let X_c be the Fermat variety of dimension $n=2r\geq 4$ and of degree m over C. Assume that: (1) m is not divisible by any prime less than n+2, or (2) m is a prime or 4. Then det $N^r(X_c)$ divides a power of m.

References

- [11] N. Aoki: On some arithmetic problems related to the Hodge cycles on the Fermat varieties. Math. Ann., 266, 23-54 (1983).
- [12] K. Iwasawa: A note on Jacobi sums. Symposia Matematica, 15, 447-459 (1975).
- [13] J.-S. Milne: On a conjecture of Artin-Tate. Ann. of Math., 102, 517-533 (1975).
- [14] —: Values of zeta functions of varieties over finite fields. Amer. J. Math., 108, 297-360 (1986).
- [15] T. Shioda: The Hodge conjecture and the Tate conjecture for Fermat varieties. Proc. Japan Acad., 55A, 111-114 (1979).
- [16] ——: The Hodge conjecture for Fermat varieties. Math. Ann., 245, 175–184 (1979).
- [17] T. Shioda and T. Katsura: On Fermat varieties. Tohoku Math. J., 31, 97-115 (1979).
- [18] J. Tate: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki exposé 306, Dix exposés sur la cohomologie des schémas. North-Holland, Amsterdam, pp. 189–214 (1968).