35. Fermat Motives and the Artin-Tate Formula. II

By Noriyúki Suwa
Department of Mathematics, Tokyo Denki University
(Communicated by Shokichi Iyanaga, m. J. A., May 13, 1991)

4. The Artin-Tate-Milne formula for Fermat motives. Throughout the section, $k=F_{q}$ of characteristic p and X denotes the Fermat variety of dimension $n=2 r$ and of degree m over k.

If M is a Γ-module, then M^{Γ} and M_{Γ} denote respectively the kernel and cokernel of $\varphi-1: M \rightarrow M$, where φ is the canonical generator of $\Gamma=\operatorname{Gal}(\bar{k} / k)$.

If M is a finite group, $|M|$ denotes its order. For a prime number l, $\left.\left|\left.\right|_{l}\right.$ denotes the l-adic absolute value normalized so that $| l\right|_{l} ^{-1}=l$.

For a $(Z / m)^{\times}$-orbit $A \subset \mathfrak{A}$, we define $w^{r-1}(A)=\sum_{a \in A} \max (r-\|a\|, 0)$.
Theorem 4.1 (The Artin-Tate-Milne formula I) (cf. [10], Ch. III. 2). Let M_{A} be the Fermat submotive of X, corresponding to a $(\boldsymbol{Z} / m)^{\times}$-orbit $A \subset \mathfrak{A}$. If M_{A} is not supersingular, then:
(a) $H^{n}\left(M_{A}, Z_{l}(r)\right)=0$ for each prime l with $(l, m p)=1$;
(b) $H^{n+1}\left(M_{A}, Z_{l}(r)\right)$ is finite and $\left|H^{n+1}\left(M_{A}, Z_{l}(r)\right)\right|=\left|P_{A}\left(1 / q^{r}\right)\right|_{l}^{-1}$ for each prime l with $(l, m p)=1$;
(c) $H^{n}\left(M_{A}, Z_{p}(r)\right)=0$;
(d) $H^{n+1}\left(M_{A}, Z_{p}(r)\right)$ is finite and $\left|H^{n+1}\left(M_{A}, Z_{l}(r)\right)\right|=\left|P_{A}\left(1 / q^{r}\right)\right|_{p}^{-1} \cdot q^{w^{r-1(A)}}$.

Combining the assertions of 4.1 with Iwasawa's theorem [12] and Remark 4.3, we obtain the following assertion:

Corollary 4.2. Assume that m is a prime ≥ 3 and that $k=F_{q}$ contains all the m-th roots of unity. Let M_{A} be a Fermat submotive of X, corresponding to a $(\boldsymbol{Z} / m)^{\times}$-orbit $A \subset \mathfrak{A}$. If M_{A} is not supersingular but of HodgeWitt type, then

$$
N r_{\boldsymbol{Q}\left(\xi_{m}\right) / \boldsymbol{Q}}\left(1-\frac{j(\boldsymbol{a})}{q^{r}}\right)=\prod_{\boldsymbol{a} \in A}\left(1-\frac{j(\boldsymbol{a})}{q^{r}}\right)= \pm B m^{3} / q^{w r-1(A)},
$$

where B is a positive integer which is a square, possibly multiplied by a divisor of $2 m$.

Remark 4.3. Let X be a smooth projective variety of dimension $n=2 r$ over k. Then the Bockstein operator $\beta: H^{n}\left(X, \boldsymbol{Q}_{l} / Z_{l}(r)\right) \rightarrow H^{n+1}\left(X, Z_{l}(r)\right)$ induces a bijection $\beta: H^{n}\left(X, \boldsymbol{Q}_{l} / \boldsymbol{Z}_{l}(r)\right)_{\text {cotors }} \xrightarrow{\rightarrow} H^{n+1}\left(X, \boldsymbol{Z}_{l}(r)\right)_{\text {tors }}$. We define a biadditive form on $H^{n+1}\left(X, \boldsymbol{Z}_{l}(r)\right)_{\text {tors }}$ with values in $\boldsymbol{Q}_{l} / Z_{l}$ by $\langle x, y\rangle=x \cap \beta^{-1}(y)$, where \cap denotes the cup-product pairing

$$
H^{n+1}\left(X, \boldsymbol{Z}_{l}(r)\right) \times H^{n}\left(X, \boldsymbol{Q}_{l} / \boldsymbol{Z}_{l}(r)\right) \longrightarrow \boldsymbol{Q}_{l} / \boldsymbol{Z}_{l} .
$$

Then \langle,$\rangle is non-degenerate and skew-symmetric. Hence \left|H^{n+1}\left(X, Z_{l}(r)\right)_{\text {tors }}\right|$ is a square, or twice a square if $l=2$.

If M_{A} is a Fermat submotive of the Fermat variety X of dimension $n=2 r$ and of degree m and l is a prime with $(l, m)=1$, the pairing

$$
\langle,\rangle: H^{n+1}\left(X, Z_{l}(r)\right)_{\text {tors }} \times H^{n+1}\left(X, Z_{l}(r)\right)_{\text {tors }} \longrightarrow \boldsymbol{Q}_{l} / Z_{l}
$$

induces a non-degenerate skew-symmetric pairing

$$
\langle,\rangle ; H^{n+1}\left(M_{A}, Z_{l}(r)\right)_{\mathrm{tors}} \times H^{n+1}\left(M_{A}, Z_{l}(r)\right)_{\mathrm{tors}} \longrightarrow \boldsymbol{Q}_{l} / \boldsymbol{Z}_{l} .
$$

Remark 4.4. Shioda has proved that if $n=2, p \equiv 1(\bmod . m)$ and M_{A} is not supersingular, then

$$
N r_{\boldsymbol{Q}\left(\zeta_{m}\right) / \boldsymbol{Q}}\left(1-\frac{j(\boldsymbol{a})}{q}\right)=\prod_{\boldsymbol{a} \in A}\left(1-\frac{j(\boldsymbol{a})}{q}\right)= \pm B m^{3} / q^{w 0(A)}
$$

where B is a positive integer which is a square up to $2 m p$ (cf. [4], Th. 7.1). In this case, M_{A} is ordinary. He also suggested the assertion of 4.2.
4.5. To analyze the case when M_{A} is a supersingular Fermat submotive of X, we recall Milne's argument ([14], Prop. 6.5 and Prop. 6.6).

Let $\theta_{l} \in H^{1}\left(k, Z_{l}\right)=Z_{l}$ be a canonical generator and let $\varepsilon_{l, A}$ denote the homomorphism $H^{n}\left(M_{A}, Z_{l}(r)\right) \rightarrow H^{n+1}\left(M_{A}, Z_{l}(r)\right)$ defined by the cup-product with θ_{l}. Then the diagram

is commutative. Here the vertical arrows are defined by the HochschildSerre spectral sequence

$$
E_{1}^{r j}=H^{r}\left(\Gamma, H^{j}\left(M_{A, \bar{k}}, Z_{l}(r)\right) \Longrightarrow H^{r+j}\left(M_{A}, Z_{l}(r)\right)\right.
$$

and the horizontal arrow below is the composite of the obvious maps $H^{n}\left(M_{A, \bar{k}}, Z_{l}(r)\right)^{\Gamma} \rightarrow H^{n}\left(M_{A, \bar{k}}, Z_{l}(r)\right)$ and $H^{n}\left(M_{A, \bar{k}}, Z_{l}(r)\right) \rightarrow H^{n}\left(M_{A, \bar{k}}, Z_{l}(r)\right)_{\Gamma}$.

Theorem 4.6 (The Artin-Tate-Milne formula II). Assume that \boldsymbol{F}_{q} contains all the m-th root of unity. Let M_{A} be a supersingular Fermat submotive of X.
(1) Let l be a prime with $(l, m p)=1$. Then $H^{n+1}\left(M_{A}, Z_{l}(r)\right)$ is torsionfree and all the maps in the diagram
 are bijective.
(2) $\varepsilon_{p, A}: H^{n}\left(M_{A}, Z_{p}(r)\right) \longrightarrow H^{n+1}\left(M_{A}, Z_{p}(r)\right)$ is injective and

$$
\left|\operatorname{det} \varepsilon_{p, A}\right|_{p}^{-1} \cdot\left|H^{2 r+1}\left(M_{A}, Z_{p}(r)\right)_{\mathrm{tors}}\right|=q^{w^{r-1}(A)} .
$$

Corollary 4.7. Assume that M_{A} is ordinary and supersingular. Then $H^{n+1}\left(M_{A}, Z_{p}(r)\right)$ is torsion-free and all the maps in the diagram

are bijective.
4.8. Let $N^{r}(X)$ denote the image of the composite $C H^{r}(X) \rightarrow C H^{r}\left(X_{\bar{k}}\right)$ $\rightarrow N^{r}\left(X_{\bar{k}}\right)$.

Now we assume that
(1) The Tate conjecture holds true for X;
(2) The cycle map $C H^{r}(X) \otimes_{Z} Z_{\imath} \rightarrow H^{n}\left(X_{\bar{k}}, Z_{l}(r)\right)^{r}$ is surjective for all primes l with $(l, m)=1$.

Proposition 4.9.1. Under the above assumptions, $\operatorname{det} N^{r}(X)$ divides a power of $m p$. Moreover, if X is ordinary, i.e. $p \equiv 1(\bmod . m), \operatorname{det} N^{r}(X)$ divides a power of m.

Corollary 4.9.2. Under the above assumptions, $\operatorname{det} N^{r}\left(X_{\bar{k}}\right)$ divides a power of $m p$. Moreover, if X is ordinary, $\operatorname{det} N^{r}\left(X_{\bar{k}}\right)$ divides a power of m.
5. Examples. In this section, we assume that $k=\boldsymbol{F}_{q}$ contains all the m-th roots of unity.
5.1. Let X be the Fermat surface of degree m over k. Then we have $C H^{1}\left(X_{\bar{k}}\right)=\operatorname{Pic}\left(X_{\bar{k}}\right)=N^{1}\left(X_{\bar{k}}\right)=N S\left(X_{\bar{k}}\right)$, the Néron-Severi group of $X_{\bar{k}}$, and $N^{1}(X)=N S(X)=N S\left(X_{\vec{k}}\right)^{r}$. It is known that the Tate conjecture holds true for X (Tate [6], Shioda-Katsura [5]). Therefore the canonical maps $N S(X)$ $\otimes_{Z} Z_{l} \rightarrow H^{2}\left(X, Z_{l}(1)\right)$ and $\operatorname{Br}(X)_{l \text {-tors }} \rightarrow H^{3}\left(X, Z_{l}(1)\right)_{\text {tors }}$ are bijective for each prime l, and $\operatorname{Br}(X)$ is finite (Tate [18], Milne [13]). Here $\operatorname{Br}(X)=H^{2}\left(X, \boldsymbol{G}_{m, X}\right)$ denotes the Brauer group of X.

Theorem 5.2 (The Artin-Tate formula) ([10], Ch. IV. 2). Let X be the Fermat surface of degree m and M_{A} the Fermat submotive of X, corresponding to a $(\boldsymbol{Z} / m)^{\times}$-orbit $A \subset \mathfrak{A}$.
(I) Suppose that M_{A} is not supersingular. Then:
(a) $\left|\operatorname{Br}\left(M_{A}\right)_{l \text {-tors }}\right|=\left|\prod_{a \in A}\left(1-\frac{j(a)}{q}\right)\right|_{l}^{-1}$ for each prime l with $(l, m p)=1$.
(b) $\left|\operatorname{Br}\left(M_{A}\right)_{p \text {-tors }} / q^{w{ }^{w(A)}}=\left|\prod_{\boldsymbol{a} \in A}\left(1-\frac{j(\boldsymbol{a})}{q}\right)\right|_{p}^{-1}\right.$.
(II) Suppose that M_{A} is supersingular. Then:
(a) $\operatorname{Br}\left(M_{A}\right)_{l \text {-tors }}=0$ and $\left|\operatorname{det} N S\left(M_{A}\right) \otimes_{Z} Z_{l}\right|_{l}=1$ for each prime l with $(l, m p)=1$.
(b) $\left|\operatorname{Br}\left(M_{A}\right)_{p \text {-tors }}\right|\left|\operatorname{det} N S\left(M_{A}\right) \otimes_{Z} Z_{p}\right|_{p}^{-1}=q^{w(A)}$.
(Note that $w^{0}(A)=\#\{\boldsymbol{a} \in A ;\|\boldsymbol{a}\|=0\}$.)
Remark 5.3. The assertions for the l-part with $(l, m p)=1$ in the above theorem are due to Shioda [4], Prop. 6.1.

Corollary 5.4. If X is ordinary, then $\operatorname{det} N S(X)$ and $\operatorname{det} N S\left(X_{\vec{k}}\right)$ divide a power of m.

Remark 5.5. If $m=7$ and $p \equiv 2$ or 4 (mod. 7), X is of Hodge-Witt type (but not ordinary). It is similarly seen that $N S(X)$ and $N S\left(X_{\bar{k}}\right)$ divide a power of $m=7$.

Remark 5.6. Shioda has proved that $\operatorname{det} N S(X)$ divides a power of $m p$ for the Fermat surface X of degree m over \boldsymbol{F}_{q} ([4], Cor. 6.3). He has also remarked that $\operatorname{det} N S\left(X_{\vec{k}}\right)$ divides a power of m if X is ordinary (loc. cit. Remark 6.4 and Addendum).
5.7. Let X be the Fermat variety of dimension $n=2 r \geq 4$ and of degree m over k. It is known that the Tate conjecture holds true for X in the following cases:
(1) X is ordinary, i.e. $p \equiv 1$ (mod. m) and m is not divisible by any prime less than $n+2$;
(2) X is ordinary, i.e. $p \equiv 1(\bmod . m)$ and m is a prime or 4;
(3) X is supersingular, i.e. $p^{\nu} \equiv-1(\bmod . m)$ for some ν (Shioda [15], [16], Shioda-Katsura [5], Aoki [11]).

Proposition 5.8. Let X be the Fermat variety of dimension $n=2 r \geq 4$ and of degree m. Assume that (1) or (2) is satisfied. Then $\operatorname{det} N^{r}(X)$ and $\operatorname{det} N^{r}\left(X_{\bar{k}}\right)$ divide a power of m.

Corollary 5.9. Let X_{c} be the Fermat variety of dimension $n=2 r \geq 4$ and of degree m over C. Assume that: (1) m is not divisible by any prime less than $n+2$, or (2) m is a prime or 4 . Then $\operatorname{det} N^{r}\left(X_{c}\right)$ divides a power of m.

References

[11] N. Aoki: On some arithmetic problems related to the Hodge cycles on the Fermat varieties. Math. Ann., 266, 23-54 (1983).
[12] K. Iwasawa: A note on Jacobi sums. Symposia Matematica, 15, 447-459 (1975).
[13] J.-S. Milne: On a conjecture of Artin-Tate. Ann. of Math., 102, 517-533 (1975).
[14] -: Values of zeta functions of varieties over finite fields. Amer. J. Math., 108, 297-360 (1986).
[15] T. Shioda: The Hodge conjecture and the Tate conjecture for Fermat varieties. Proc. Japan Acad., 55A, 111-114 (1979).
[16] - -: The Hodge conjecture for Fermat varieties. Math. Ann., 245, 175-184 (1979).
[17] T. Shioda and T. Katsura: On Fermat varieties. Tohoku Math. J., 31, 97-115 (1979).
[18] J. Tate: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki exposé 306, Dix exposés sur la cohomologie des schémas. North-Holland, Amsterdam, pp. 189-214 (1968).

