34. Weinstein Conjecture and a Theory of Infinite Dimensional Cycles

By Hiroshi Morimoto
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1991)

Introduction. Let (M, ω) be a contact manifold of dimension $2 n+1$. Then there exists on M a vector field ξ, called a characteristic field (or Reeb field) such that

$$
\begin{gathered}
d \omega(\cdot, \xi) \equiv 0 \\
\omega(\xi) \equiv 1 .
\end{gathered}
$$

If M is an imbedded star-shaped sphere in $R^{2 n+2}$, and if f is a smooth function on $\boldsymbol{R}^{2 n+2}$ such that $M=f^{-1}(k)$ for some $k \in \boldsymbol{R}$ and $d f$ is nowhere zero on M, then ξ is a Hamiltonian vector field of f with respect to the canonical symplectic structure Ω on $R^{2 n+2}$ (after a normalization). A. Weinstein [5] and P. Rabinowitz [4] showed there exists at least one closed orbit of ξ for any star-shaped sphere. In view of this result, the existence of closed orbits of ξ for any compact contact manifolds was conjectured by A. Weinstein.

For compact hypersurfaces of contact type in $R^{2 n+2}$, the conjecture was solved affirmatively by Viterbo [6]. His result was extended by Floer, Hoffer and Viterbo [2] for compact hypersurfaces of contact type in $C^{l} \times P$, here (P, Ω) is a compact symplectic manifold, $l>0$ and Ω is supposed to vanish on $\pi_{2}(P)$.

This problem has the following variational aspect. Closed orbits of ξ coincide with the critical points of the following variational problem:

$$
\begin{gathered}
L(c)=\int_{c} \omega(\dot{c}) d s \\
c \in C^{1}\left(S^{1}, M\right)
\end{gathered}
$$

A neck of solving the conjecture for a general case lies in a break-down of the so calld Palais-Smale condition. This leads us to the notion of critical points at infinity, which are defined to be the set of limit points of sequences c_{i} such that the action of c_{i} tends to zero. In this paper we discuss this failure of the Palais-Smale condition and identify these critical points at infinity, using a theory of infinite dimensional cycles.

We define in the next section a family of operators $P=\left\{P_{c}\right\}$ parametrized by a free loop space $C^{1}\left(S^{1}, M\right)$. We derive from this family of operators a number of infinite dimensional cycles in the space $C^{1}\left(S^{1}, M\right)$. A general theory of infinite dimensional cycles associated to operators was studied in [3], to which we refer for notations of cycles. Among these cycles, our interest lies in a solution cycle $\kappa^{1.1}(P)$.

We suppose that the Stiefel-Whitney classes $w_{2_{n}}(M), w_{2 n-1}(M)$ are equal to zero. Let v be a non-zero vector field in $\operatorname{ker}(\omega)$. Then we have:

Theorem. (i) The critical points at infinity on $\kappa^{1.1}(P)$ are piecewise smooth curves, broken at points $\left\{p_{i}\right\}$, such that (1) each segment from p_{i} to p_{i+1} is an orbit of ξ or v. (2) p_{i} is conjugate to p_{i+1}.
(ii) The cohomology class corresponding to the cycle $\kappa^{1.1}(P)$ is zero in $H^{*}\left(C^{1}\left(S^{1}, M\right)\right)$.

For $n=1$ (i.e., for 3 -dimensional contact manifolds) the first part of the above theorem was proven by A. Bahri [1]. See also [1] for the definition of conjugacy and the notion of critical points at infinity.

Infinite dimensional cycles and a family of operators. In this section we define a family of operators, from which infinite dimensional cycles are derived. Since ξ is a non-zero vector field, we have a decomposition $T M=$ $\operatorname{ker}(\omega) \oplus\langle\xi\rangle$, and we let v be a non-zero section of $\operatorname{ker}(\omega)$. Then we have a decomposition $\operatorname{ker}(\omega)=\langle v\rangle \oplus W \oplus L$ for some W and some line bundle L from the assumption. For each curve $c \in C^{1}\left(S^{1}, M\right)$, we denote by $c^{*}(T M)$ the pullback of $T M$. We now define a family of operators $P=\left\{P_{c}\right\}$ parametrized by $C^{1}\left(S^{1}, M\right)$ as follows. For $c \in C^{1}\left(S^{1}, M\right)$, we set

$$
\begin{gathered}
\left.P_{c}: \Gamma\left(S^{1}, c^{*}(T M) /\langle v\rangle\right)\right) \rightarrow \Gamma^{\prime}\left(S^{1}, \operatorname{Hom}\left(\otimes^{2 n-2} W, \boldsymbol{R}\right) \oplus \boldsymbol{R}\right) \\
P_{c}(v)=\left((d \omega)^{n}(y, v, *, \cdots, *), \frac{d}{d s} \omega(y)\right) \\
y \in \Gamma\left(S^{1}, c^{*} T M /\langle v\rangle\right)
\end{gathered}
$$

Although the above family of operators is not a Fredholm morphism, it is easy to get a Fredholm morphism from P by selecting appropriate subspaces of Γ. We denote again this family by P. We then have a solution cycle $\kappa^{1,1}(P)$ on the parameter space $C^{1}\left(S^{1}, M\right)$ from [3]. Actually we have cycles $\kappa_{p, q}^{1,1}(P)$, but the integers p, q depend only on the choice of subspaces in Γ for defining a Fredholm morphism. Therefore we denoted simply $\kappa^{1,1}(P)$ neglecting p, q.

References

[1] A. Bahri: The theory of critical points at infinity (preprint).
[2] A. Floer, H. Hofer and C. Viterbo: Weinstein conjecture in $P \times C^{1}$. MSRI, 0082489 (1989).
[3] H. Morimoto: A theory of infinite dimensional cycles for Dirac operators. Proc. Japan Acad., 65A, 67-69 (1989).
[4] P. H. Rabinowitz: Periodic solutions of Hamiltonian systems. Comm. Pure Math., 31, 157-184 (1978).
[5] A. Weinstein: On the hypotheses of Rabinowitz periodic orbit theorems. J. Diff. Equ., 33, 353-358 (1979).
[6] C. Viterbo: A proof of Weinstein's conjecture in \boldsymbol{R}^{22}. Annals de l'Institut Henri Poincaré, Analyse non-linéare, 4, 337-356 (1987).

