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1. Introduction. In ring theory, it is well known that each one of
the intersection and the product of a minimal right ideal and a minimal left
ideal of a ring is either {0} or a minimal quasi-ideal of the ring (see [2]). In
[5], this result has been generalized for zero-symmetric near-rings.

The purpose of this note is to extend the above result to a class of ab-
stract affine near-rings. For the basic terminology and notation we refer
to [1].

2. Preliminaries. Let N be a near-ring, which always means right
one throughout this note.

If A and B are two non-empty subsets of N, then AB denotes the set
of all finite sums of the form a.b, with a e A, b e B, and A. B denotes
the set of all finite sums of the form (a(a’+b)--a.a’) with a, a e A,
beB.

A right ideal of N is a normal subgroup R of (N, +) such that RN_R,
and a left ideal of N is a normal subgroup L of (N, +) such that N. L_L.
A quasi-ideal of N is a subgroup Q of (N, +) such that N Q NQ QN

_
Q.

Right ideals and left ideals are quasi-ideals. The intersection of a family
of quasi-ideals is again a quasi-ideal.

A non-zero quasi-ideal Q of N is minimal if the only quasi-ideal of N
contained in Q are {0} and Q. Similarly, one defines minimal right ideals
and minimal left ideals.

A near-ring N is called an abstract affine near-ring if N is abelian and
N0--N, where No andN are the zero-symmetric part and the set of all dis-
tributive elements of N, respectively.

Let N be an abstract affine near-ring. Then the following hold (see [3]
and [4])"

(a) A subgroup L of (N, +) is a left ideal of N if and only if NoL_L.
(b) If S is a subgroup of (N, +), then NoS is a left ideal of N and SN

is a right ideal of N.
(c) A subgroup Q of (N, +) is a quasi-ideal of N if and only if NoQ

QN_Q.
3. Main results. We start with
Lemma 1. Let N be an abstract affine near-ring. Then a minimal

right (left) ideal of N contained in No is a minimal right (left) ideal of No.
Proof. Let R be a minimal right ideal of N contained in No. By [1,

Proposition 9.73] we have R=Ro+Rc, where Ro=RNo is a right ideal of
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No, Rc--RNc where Nc is the constant part of N and RoN_R. Since
R_No, we have R--Ro, R--{0} and RN--(O}. So, i R’ is a non-zero right
ideal of No contained in R, then we have R’N--{0}. Therefore we have

R’N R’(No -t- Nc) R’No+R’N R’No
_

R’,
whence R’ is a right ideal o N. By the minimality of R we have R’--R.
Thus R is a minimal right ideal of No.

Now let L be a minimal left ideal of N contained in No. Then L is a
left ideal of No, since NoL_L. On the other hand, if L’ is a non-zero left
ideal of No contained in L, then we have NoL’ _L’, that is, L’ is a left ideal
of N. By the minimality of L we have L’=L. Thus L is a minimal left
ideal of No.

Lemma 2. Let N be an abstract affine nea.r-ring. Then, for every
right ideal R of N and for every non-empty subset A of N, R, A--RoA
holds, where Ro--R f No.

The proof is straightforward and omitted.
Lemma 3. Let N be an abstract affine near-ring. If Q is a minimal

quasi-ideal of No, then Q is a minimal quasi-ideal of N.
Proof. By [3, Corollary] Q is a quasi-ideal of N. On the other hand,

let Q’ be a non-zero quasi-ideal of N contained in Q, then we have
NoQ’ Q’No_Noe’ f Q’N_Q’,

whence Q’ is a quasi-ideal of No. So, by the minimality of Q we have
Q’=Q. Thus Q is a minimal quasi-ideal of N.

Now we are ready to state the main results of this note.
Theorem 1. The intersection of a minimal right ideal R and a mini-

mal left ideal L of a.n abstract affine near-ring N is either {0} or a minimal
quasi-ideal of N.

Proof. The intersection R f L=Q is a quasi-ideal of N. If Q=/={0},
then we assume the existence of a non-zero quasi-ideal Q’ such that Q’c Q.

In case of NoQ’--{O}, Q’ would be a left ideal of N such that {0}c Q’ cL,
which contradicts the minimality of L;so we have NoQ’ve{O}. Since NoQ’
is a left ideal of N contained in L, by the minimality of L we have NoQ’--L.
Similarly, one can show that Q’N=R. Therefore we have Q_=R L--Q’N
fNoQ’_Q’, in contradiction with our assumption Q’cQ. Thus Q--RfL

(=/={0}) is a minimal quasi-ideal of N.
Theorem 2. The pro.duct R. L of a minimal right ideal R and a

minimal left ideal L of an abstract affine near-ring N is either {0} or a

minimal quasi-ideal of N.
Proof. By Lemma 2, we have R, L--RoL, where Ro=R No.
Suppose that RoL=/={0}. Since N is a right ideal of N, R=RfN is a

right ideal o N contained in R. By the minimality of R, either R={0} or

Rc=R. In case of Rc--R, we have R0=(0}, because R--Ro+R. Hence
RoL={O}, which contradicts our assumption that RoLve{0}; so we have R=
{0}, R R0 and RoL R L--_ RL.

If No(RL)={O}, then we have
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No(RL) ] (RL)N- {0}_cRL,
whence RL is a quasi-ideal o N such that (O}=kRL=RoLC_R ]L. Moreover,
by Theorem 1, R FL is a minimal quasi-ideal o N. So, R. L=RL--R
is a minimal quasi-ideal of N.

If No(RL)=k{O}, No(RL) is a non-zero left ideal of N such that No(RL)=
No(RoL) C_NoL c_L. By the minimality of L, we have No(RL)-- L. Moreover
we have

RL--RoLC_R ] Lc_R C_No,
whence L_--N0(RL) C_No. Thus R, L__N0. So, by Lemma 1, R and L are a

minimal right ideal and a minimal let ideal of No, respectively. Hence, by

[5, Theorem 4], R. L-RL is a minimal quasi-ideal o No. Therefore, by

Lemma 3, R. L is a minimal quasi-ideal of N.
Theorem 3. The product RL of a minimal right ideal R and a mini-

mal left ideal L of an abstract alpine near-ring N is either (0} or a minimal
quasi-ideal of N.

Proof. The proof of Theorem 2 shows that Rc--R Nc is either R or

{0).
In case of Re=R, we have RL-R. Let Q be a non-zero quasi-ideal of

N contained in R. Siace Qc=Rc_Nc, we have QN-Q, that is, Q is a right

ideal of N. By the minimality of R, we have Q--R. Thus RL is a minimal
quasi-ideal of N.

In case of R=(0}, the proof of Theorem 2 shows that RL-R. L. So,
by Theorem 2, RL is either {0} or a minimal quasi-ideal of N.

Now, it is natural to ask whether or not Theorems 1, 2 and 3 hold re-
spectively for arbitrary non-zero-symmetric near-rings. This question is
still open.
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