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On Regular Subalgebras of a Symmetrizable
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Let (A) be a Kac-Moody algebra with A a symmetrizable generalized
Cartan matrix (- GCM) over the complex number field C. In this paper,
we study its certain subalgebras called regular subalgebras. These sub-
algebras are defined as a natural infinite dimensional analogue of regular
semi-simple subalgebras of a finite dimensional complex semi-simple Lie
algebra in the sense of Dynkin. The latter plays an important role in the
classification of semi-simple subalgebras (cf. [1]).

1. Definition of regular subalgebras. Let A be an n Xn symmetri-
zable GCM, and ) be a Cartan subalgebra o the Kac-Moody algebra g(A).
Then we have the root space decomposition o g(A)"

fi(A) =)@efi,

where go= {x e (A); [h, x]--(a, h}x, for all h e )} for a e )* (the algebraic
dual of )), and c* is the root system of (A) (see [3] or details). To
define a regular subalgebra of (A), we introduce the notion of fundamental
subset of

Definition 1.1. A subset II={,,..., , fl+,,...,+} of the root
system J of (A) is called fundamental if it satisfies the following"

( 1 ) H ={fl}__+} is a linearly independent subset of *;
(2)
(3) fl is a real root (1.<i<m) and fl is a positive imaginary root

(m+l<_]m+k).
Now, let (. I’) be a fixed standard invariant form on (A) such that

(a la) e Z (1i, ]<_n), where {a}.=cJ is the set of all simple roots o (A)
(cf. [3, Chap. 2]). For each imaginary root fl (m+l <_] <_m+ k), we define

fl}/’=,-’(fl)e, where ," )-+* is a linear isomorphism determined by

@(h),h’}=(hlh’) (h,h’ e). For real root fl (l<i<m), flve) has been
defined as a dual real root of fl, and we know flv =2/(fl Ifl)""-’(fl) (cf. [3,
Chap. 5]).

Proposition 1.1. Let H--{flr}=+} be a fundamental subset of zl, and
put " =m,=,,r + where =<fl, flv}. Then, is a symmetrizable GGCM
(= generalized GCM). Moreover, a=2 if and only if fl is a real root
(l <_i<_m+ k).

Here, A is a GGCM means that A satisfies the following"
(C1) either t,=2 or a is a non-positive integer;
(C2) a is a non-positive integer if i:/=];
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(C3) ate=0 implies a,=0.
Note that when a** =2 for every i, A is a GCM.

Let (A) be the Lie algebra associated to the above GGCM A (see [3,
Chaps. I and 11]). We call it a generalized Kac-Moody algebra (= GKM
algebra). Note that when A is a GCM, fi(A) is a Kac-Moody algebra by
definition.

Proposition 1.2. There exists a. vector subspa.ce o of , such that the
triple (o.,{1 / vx+ is a realization of the GGCM . That is, it)Or=l [r Jr=l 2

satisfies the folio.wing conditions"
(R1) both the sets {fl[ + +o= c$ and {fljr=l o are linearly inde-

pendent
(R2) (fl, fl} a (1 i, ]gm+ k)
(R3) dime 0 2(m+ k)-rank A.
We fix non-zero vectors E e % and Fr e

_
such that [E,Fr]=fl

(1rm+k). Note that such vectors always exist since [g,, _,] C,- (a)
for all a e A. Let be a subalgebra o fi(A) generated by E, F (lrm
+ k), and a vector subspace 0 of which satisfies (R1)-(R3). We call this
kind of subalgebra a regular subalgebra of (A).

Theorem 1.1. Any regular subalgebra of (A) is canonically isomor-
phic to a GKM algebra. Let be as above. Then, a canonical isomor-
phism of a GKM algebra (A) onto is given as"

(e)=E, (f)=F (lrm+ k), and () 0.
Here (, tr== +, {+= is a realization of the GGCM , and , f. (1 <r<_
m+ k) are the Chevalley generators of the GKM algebra g(A).

Remark 1.1. In the above theorem, we adopt the definition in [3,
Chap. 11] of GKM algebras, which is a little different rom that of Bor-
cherds in [1]. As seen above, regular subalgebras are always isomorphic to
GKM algebras, but not necessarily isomorphic to Kac-Moody algebras in
general.

Remark 1.2. The above definition of a undamental subset H o A
and the construction of a subalgebra of g(A) corresponding to H are
generalizations of those by Morita [5]. There, he considered only the case
all fir are real roots (i.e., k=0 in the above definition) and constructed a
subalgebra , which coincides with the derived algebra [, ] o the above .

Remark 1.3. The subalgebra depends on the choice of the vector
subspace 0 of satisfying (R1)-(R3). However, its derived algebra [g, ]
does not depend on the choice of 0.

Proposition 1.3. We have the following two decompositions of "(I) =e+x(0 ( N) (Y N ) ee+x(0) ( N -,),
(II) -=+o()0+0(-),

with Q+ "==Zoa and Q +Zo. Moreover for every e Q":r=l

+Zfl we have , where {xe;[h,x] (fl, h}x, for all
h e 0}. Here we identify r e $ with r ]0 e : (since {fl ] +,o= c$ is line-
arly independent).
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From the above proposition, we can regard the root system 1 of (A)- as a subset of the root system z/ of (A), by the identification o/3rl0
with fl (l<r<m+k),_ because is a subset o r=l+Z(fl]o). Under this

identification, we have the following"

Definition 1.2 (cf. [5]). is called a root subsystem of .
2. The inheritance of a standard invariant form. In this section,

we assume that a undamental subset H consists of real roots (i.e., k=0 in
Definition 1 1). So, the matrix A ((fl, fl }),= is a GCM and the subalgebra
(]) is a Kac-Moody algebra. In this situation, we can take a "good"
vector subspace 0 of as a vector subspace 0 in Theorem 1.1 as shown
below. Let H={fl, ..., fl} be a undamental subset consisting of real

-= v We put l" rank A and t’=rank, thenroots and A ((, }),=.
clearly, t and t m.

Proposition 2.1. There exists a basis {h} {v}5 of , such that
the presentation matrix R of the standard invariant form (. .) on (A)
with respect to. this ba.sis is of the form

J 0 0 0

R=
0 0_ 0 Im-t

0 J 0
Im_t 0 Om_

where I_ is the identity matrix of degree m--t, 0_ is the zero matrix

of degree m--t, J=diag(+_l, +_1, ..., +_1)" t t-matrix, and J=diag(+_l,
___1, ..., ___1)" NN-matrix with N’=(2n--1)--(2m--t)(_O).

Now let 0 "=3-- Ch+__-t Cv. Then, we have the following.

Proposition 2.2. The triple (0, {/310}=1, {/V}n=l) is a realization of
the GCM A.

Let be a subalgebra of g(A) generated by E,F (l<r<_m), and the
above 0. Then, we see from Theorem 1.1 that is canonically isomorphic
t) a Kac-Moody algebra g(A). Moreover, we can prove the following
theorem thanks to the construction of )0 in such a detailed way as above.

Theorem 2.1. Let (A) be a regular subalgebra constructed from
the above o. Put B’=((fl flj))i,j=l and D’=diag(2/(fll[fll), ...,2/(fllfl)),
where (. i’)is the fixed standard invariant form on (A). Then, the re-
strictio.n of (. [.) to. cg(A) coincides with a standard invariant form on, which is canonically identified with (A).

This standard invariant form on ;I(A) is determined by the follow-
ing"

(F1) (flV lh)’=(fl,h}.2/(fllfl) (h e o,l<i<m),
(F2) (h’ h") =0 (h’, h" e j=-x Cvj),
(F3) ([x, y]lz)=(xl[y, z]) (x, y, z e ).

Here this form, viewed from g(), corresponds to the decomposition
and to a complementary subspace =qt Cv to 3= C/3v in 0.
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We denote by zl (resp. zl) the set of all real (resp. imaginary) roots
of fi(A). Correspondingly, we denote by z/ (resp. zl’) the set o all real
(resp. imaginary) roots for the root system / o fi(A). Then, we have the
ollowing as a direct consequence o Theorem 2.1.

Theorem 2.2. For the root system of (A) (), regarded as a root
subsystem of zl, we have

3 Type of the GGCM ,4 (</9, v\z+
3.1. Some generalities. As an application o Theorem 2.1, we obtain

the following theorem.
Theorem 3.1. Let A--(a),= be GCM of affine $ype, and II--

have either of the following two cases"

Case (a). ] is contained in zir, and f is a direc$ sum of GCM’s of
finite type or of ane type. Moreover, the number of direct summands of
affine type is at mos one.

Case (b). ]7 contains exactly one imaginary root, and A is a direc
sum of the zero matrix O of degree 1 (wih multiplicity one) and GCM’s
of finite type.

Remark 3.1. Note that the derived algebra o the Lie algebra (0)
associated to the 1 1 GGCM O is a Heisenberg Lie algebra ([3, Chap. 2]).

Contrary to this affine case, we have the ollowing example for hyper-
bolic case.

Example 3.1. Let A be a 33-matrix given below. Then A is a
GCM o hyperbolic type with the Dynkin diagram below.

A= --2 2 ():=()().

Put fl’=(r3r)(a), fl’=r(fl), and fl’=r.(fl.), where r, is a fundamental
reflection defined by a simple root a, e zl (1 _i 3). Put/7" {ill,
Then, /7 is a fundamental subset. The corresponding GCM A and its

Dynkin diagram are as follows.

Obviously, ] is neither of finite type, ot affine type, nor of hyperbolic
type. (See [4] for a similar example.)

3.2. Case of afline type GCM. In this subsection, we assume that
the GCM A=(a),=o is of non-twisted affine type (cf. [3, Chaps. 4 and 6]).
So, there exists =(a,)=0 such that A=0 and a, e Z for all i
Such a is unique under the condition that a (O_i_l) are relatively prime.

We take such a , and also denote =0 aa by . Then, we know the fol-
lowing .facts
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e z\{0}}, r e e z},
where z is the root system of the finite type Kac-Moody algebra ()c(A)
associated to the principal submatrix ’=(a.),= of A. Note that the
removed vertex 0 of the Dynkin diagram of A is so chosen that a0=l and
the type of A is xt when the type of A is X (X=A, B, ..., G). Here we
have the ollowing theorem.

Theorem 3.2. Let A=(a),=0 be a GCM o.f non-twisted a.ne type.
Then, the Dynkin diagram of the GGCM corresponding to a funda.mental
subset H of is of type either 0, Xt +Xt+ +Xt ()+X+ +X,
Xt +.y(1)ti + + Xtr, or Xtl +Xt+ +X(1)tr, where X,+X+ +X
is the type of Dynkin diagram of the GCM corresponding to a funda.mental
subset of the root system of (A).

Conversely, for each of the above types, there exists a fundamental
subset of J whose Dynkin diagram is of that type.

Here X is the type of a finite type GCM of rank t, and O, denotes
also the type o 1 X1 GGCM 0,.

Note that when A is of non-twisted affine type, Case (b) in Theorem
3.1 does not happen except for the trivial case that H consists of only one
imaginary root. Owing to the above theorem, we can determine all the
types of regular subalgebras (= the types of the GGCM’s corresponding to
fundamental subsets of ) of the non-twisted affine Lie algebra (A). This
is because those of the finite dimensional simple Lie algebra () are com-
pletely determined (see [2, Chap. II, 5]).

Remark .2. Also in the case of twisted affine type GCM, but not o
type () (/>1), the sufficiency part (the second part) o Theorem 3.2 is true.2t

Here note that or the GCM A (a () (),=0 o type (1> 3), (1>2) E)

or D), the type of (a)t,= is C, B, F, or G, respectively.
Acknowledgements. The author expresses his heartfelt thanks to

Profs. T. Hirai and K. Suto for helpful discussions. He is also grateful
t) Prof. J. Morita for sending his preprint from Germany.

References

1 R. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 11.5, 501-512 (1988).
2 E.B. Dynkin: Semi-simple subalgebras of semi-simple Lie algebras. Amer. Math.

Soc. Transl., 6, 111-244 (1957).
[3 V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge University

Press, Cambridge (1990).
4 R.V. Moody and A. Pianzola: On infinite roo.t systems.. Trans. Amer. Math. Soc.,

31.5, 661-696 (1989).
5 J. Morita: Certain rank two subsystems of Kac-Moody root systems. Infinite

Dimensio.nal Lie Algebras and Groups (ed. V. G. Kac). Adv. Ser. in Math. Phys.,
7, 52-56, World Scientific, Singapore, New Jersey (1989).


