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The Nonlinear SchrSdinger Limit and the Initial Layer
of the Zakharov Equations

By Tohru OZAWA*) and Yoshio TSUTSUMI**)

(Communicated by Shokichi IYANAGA, M. J.A., April 12, 1991)

A simple system of equations for the propagation of Langmuir turbu-
lance in an unmagnetized, completely ionized hydrogen plasma was first
obtained by Zakharov [6] by means of a two-fluid description of the plasma.
In suitably scaled coordinates, the Zakharov equations are the following"
(Z) iE+zlE=nE, tO, x e R’,

-3 --zln=zlE], t0, x e R,
E(O, x)=Eo(x), n(O, x)=o(X), tn(O, x)=nl(x), x e RN,

where E and n are functions on RR with values in C and R, respec-
tively, 1 is a parameter, and (E0, n0, n) are given initial data. In these
equations E is the slowly varying complex amplitude o the electric field, n
is the deviation of ihe ion density from its equilibrium, and is the ion
sound speed. In the limit oo in the second equation of (Z3 we formally
have the equation (n+]Ei)=O so that n=-]EI if n+lE] vanishes at
infinity. Therefore in the limit in (Z3 we formally obtain the nonlinear
SchrSdinger equation
(NLS) itE+zlE= -[E[E, tO, x e R",

E(0, x)--E0(x), x e R‘v.
Thus (Z) can be regarded as a natural extension of (NLS), when we take a
finite response time of the nonlinear medium of the ion part of the plasma
into account, and the limit -c turns out to be related to an instant re-
sponse of the medium.

From now on we assume that the initial data (E0, 0, nl) are in the
Schwartz space . Let E be the solution of (NLS) in H with the maximal
existence time Tmax, where H--(>_0 H and H is the usual Sobolev space
of order k. If was shown in H. Added and S. Added [1], Ozawa and
Tsutsumi [3], Schochet and Weinstein [4], and C. Sulem and P. L. Sulem
[5] that if n e/:/- and 1 <_N<_3, then for any T with 0T<Tm and any
m e N there exist two positive constants Co and 0 such that for any
(Z) has a unique solution (E,n) on the interval [0, T] belonging to
C([0, T]; H) and satisfying

sup sup
220 OtKT

where /:/-={q e 3’ (-z/)-/2q e L’}, and in particular, Tmax oo if N=I.
Moreover, it is shown in [1] that if n=17. with e , then there exist two
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positive constants C, and such that for any _>
( 1 ) sup (IE(t)--E(t)l +lln(t)+]E(t)l-Q’(t)

O<t<_T

[C,2-’/ if o+]E0]20 and N=I, 2,

C,2-’/2log2 if u0+]Eo]2,0 and N=3,
[C,-’ if n0+E0=0 and lN3,

where Q()(2t)=(cos2t(-A)/2)(no+]Eo). In this problem there is a differ-
ence between the non-compatible case 0+]E00 and the compatible case

n0 +]E0 ] 0 concerning the rate of convergence as , because the initial
layer phenomenon occurs in the non-compatible case. But the difference
between the both cases does not appear enough in (1). In the present
paper we investigate precisely the convergence rate in of solutions for
(Z3 and the effect of the initial layer so that we can understand the differ-
ence between the both cases more clearly. In fact, we have the following
observation. If we perform a formal perturbation method under the as-
sumptions
( 2 ) E=E()+-E()+-E()+O(-O,
(3) n=n()+-n(’+-n()+O(-O,
as 2 in a suitable sense, with smooth functions E(), n() on RXR
independent of , we obtain

zeroth order equations

n(0)=_E(0)[, i,E()+E()=
first order equations

n()= --2 Re (E(). E")),
iE") +AE() --]E() [E")-2 (Re(E(). E(’))E(),

second order equations

n()-An() A([E() ]+2 Re (E(). E())),
i3E() +AE)= --]E()E()-2(Re (E(). E()))E() +n()E),

with the initial data n()(0)=n0, 3tn()(O)=n, E()(0)=E0, and n()(0)=0,
E()(0)=0 for ]=1, 2. From the equation or E() we see that E() is equal
to the solution E to (NLS). For the equation of E(’, we compute the time
derivative of ]]E()(t)] and use Gronwall’s inequality to obtain
where ]]. ][ denotes the L-norm. This leads to
( 4 ) E E+-E() + 0(2-0,
( 5 ) n+[E]=2-(n() +2 Re (E.E()))+O(-O,
which is exactly the same condition as the one used in Gibbons [2] as the
first step of his formal derivation of (NLS) from (Z3. Under the assump-
tions (2)-(3) it must hold that

n0+[E0]=0 and n+(3E]O(O)=n+2Im(Eo.AEo)=O.
This compatibility condition on the initial data is so strong that this is a
main drawback of the ormal perturbation method. But (4)-(5) suggest
that C2- in the RHS of (1) can be replaced by C2- in that case. We now
state our main result.

Theorem. Let 1N3. Let Eo, noe and let ne H-. Let E
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be the solution of (NLS) with the maximal existence time Tmax and let
(n, E) be the solution of (Z). Then"

1 ) For any T with OTTma and any m e N there exist two posi-
tive constants C and o such that for anyo

sup IIn(t)+lE(t)]-Q((t)--’Q()(t)ll_C-,
OtKT

where Q(’)(t) (cos t(-)’/) (n0 +[E0 ])
and Q()(t) (-J)-n(sin t(-)’/) (n, + 2 Im (E0. E0)).
In particular, for any o

sup n(t)+E(t)-Q(’)(t)C-’.
OtKT

(2) Assume no+]Eo]O. Then for any T with OTT and any
m e N there exist two positive constants C and o such that for any

sup E(t)--E(t) [HmC-1.
OtT

(3) Assume n0+{E0]=0. In addition, when N2, assume that
takes the form n=g. for some e . Then for any T with OTTx
and any m e N there exist two positive constants C and o such that for
any o

sup ]E(t)--E(t)][C2-.
OKtKT

Remark. (1) The assumption n e H- is redundant when N=3
since H- for N3. This fact follows by using the Hardy inequality
in the Fourier space.

2 ) Q()(t), ]=1, 2, in part (1) solve the wave equation
Q()-Q()=O, tO, x e R, ]=1, 2

with the initial conditions Q()(0, x)=no(X)+]Eo(x), 3tQ’)(O, x)=0, and
Q()(0, x)=0, 3Q()(0, x)=n(x)+2 Im(E0.AE0)(x), respectively. The terms
Q(1)(t) and -Q()(t) represent the first initial layer and the second initial
layer, respectively, in the nonlinear SchrSdinger limit of (Z).

(3) For tO Q()(t)tends to zero locally in space for N=I and glo-
bally in space for N=2, 3 as 2. Accordingly, the above theorem implies

that or Ot4 Tmax, n behaves like --lEvi and so like--E] as.
(4) The results i parts (2)-(3) are optimal concerning the rate

convergence with respect to . Indeed, there exist nontrivial solutions E
satisfying

lira inf sup ]]E(t)--E(t)[,O
OgtT

in the non-compatible case and
lim in sup ]]E(t)-E(t)]]O

OtgT

in the compatible case.
The above theorem gives a detailed description of formation of initial

layers with almost optimal rate of convergence for solutions of (Z). For
any T with 0TTx, E behaves like E on [0, T] and n behaves like

--]E] on (0, T]. This difference between the time intervals for convergence

of these solutions is due to the initial layer phenomena. The formation of

initial layers also reflects the rate of convergence or solutions of (Z).
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Our method of the proof of the theorem depends essentially on the
special propagation properties of acoustic waves and of nonlinear SchrSd-
inger waves. An outline of the proofs roughly given as follows. By setting
Q=n+IE[, (Z) is rewritten as the system of integral equations

Q(t) Q()(2t) + 2-Q()(2t)

: 1/2+- ( )-’n(sin ($-- s) ( ) )]E[(s)ds,
d

where U($)=e and QU is as in the above theorem. Hence, we have

u(t-

Our main task is to obtain sharp estimates for the second integral in the
RHS of (6). The term QE in the integrand corresponds to the interaction
between acoustic wave Q and nonlinear SchrSdinger wave E. Q propa-
gates according to the Huygens principle and is localized in a neighborhood
of the sphere x[=2t. Therefore, Q propagates very act as 2. On
the other hand, E propagates with group velociW independent o 2 and is
well localized in a ball with radius independent of . Thus, we can prove
that the product QE converges to zero aster Q as. This is a main
idea of our method, which is different from that of [1]. Detailed argu-
ments will be given elsewhere.
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