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27. Fermat Motives and the Artin.Tate Formula. I

By Noriyuki SUWA
Department of Mathematics, Tokyo Denki University

(Communicated by Shokichi IYANA.GA, M. $. A., April 12, 1991)

In this note, we mention some results on the Artin-Tate ormula for
Fermat motives in the higher dimensional cases, which was achieved by [4]
and [10] in the 2-dimensional case. Detailed account will be published
elsewhere.

1. Definition of Ferrnat motives (Shioda [4]). 1.1. Let k be a field
and let X be the Fermat variety of dimension n and of degree m over k"

X" T+T+...+T+1
We assume that (m, p)=l if k is of characteristic p)O. Let Z denote the
group o m-th root of unity in k. The group G=(z)+/(diagonal) acts
naturally on X=X@k. The character group G of G is identified with the
set

{a=(a0, ,,’" ",.+);a, Z/, la’=0};,=0
Let (Z/m) act on by ta=(ao, ..., a+) e for any a e and $ e (Z/m).

Let be a fixed primitive m-th root o unity in Q. For the (Z/m)-orbit A of a= (ao, ., a+) e , define

p-
m+

Tr>/(a(g)-)g e Z [G].

Here d=gcd(m, a0,..., a+). Then p are idempotents, i.e.

.= =1

where O(d) denotes he set of (Z/m)-orbits in d. The air M=(X,)
defines
A (Shioda [4], . 12g).

1.Z. Define a subse of by
{a (a, ., a.) e G a 0 for all i}.

Nor each

where (x) stands for the fractional part of x e Q/z.
1.3. Let R be a ring, in which m is invertible, and let F be a contra-

variant unctor rom a category of varieties over to the category of R-
modules. For a Fermat submotive M=(X, p) of X, define

F(M)=Im [p" F(X)F(X)].
Example 1.4. Let be prime number different from the characteristic

of . The/-adic 6le cohomology groups H’(X, Q(i)), i e z; moreover, if
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is prime to m, H’(X, Z/It(i)), H’(X, Z(i)), H’(X, Q/z(i)), i e z.
Example 1.5. The de Rham cohomology groups H’R(X/k), or the

Hodge spectral sequence E, H(X, 9x)-/(X/k)"--/ DR

For the examples below, assume that k is perfect of characteristic
p>0.

Example 1.6. The crystalline cohomology groups H’(X/W), H’(X/W),
H’(X/W), or the slope spectral sequences E’=H(X, W9x)H’(X/W=),
and E,=H(X, Wgx)H’(X/W) (cf. [1], Ch. II).

Example 1.7. The logarithmic Hodge-Witt cohomology groups
H’(X, Z/p(i))=H’-(X, Wr9x,o), H’(X, Z(i))=limH’(X, ZipS(i)) and

H’(X, Qv/Zv(i))=li_mH’(X, Z/pr(i)), i e N (cf. [2], Ch. IV. 8, [9], Ch. I).

2. Fermat motives in characteristicp>0 ([10]). Throughout the sec-
tion, X denotes the Fermat variety of dimension n and of degree m over

=F.
2.1. Let M be a Fermat submotive of X. We call the slopes and the

Newtzn polygon of the F-crystal (H=(M/W), F) (cf. [8]) the slopes and the
Newton polygon of M, respectively.

Definition 2.2. Let M be the Fermat submotive of X, corresponding
to a (Z/m)-orbit A.

(a) M is said to be ordinary if the Newton polygon and the Hodge
polygon of M coincide.

(b) M is said to be supersingular if the Newton polygon has the
pure slope n/2.

(c) M is said to be of Hodge-Witt type if H(M, W9) is of finite
type over W for all pairs (i, ’) with i+]=n (cf. [2], Ch. IV, 4.6).

Proposition 2.3 ([10], Ch. II, 8). Le M be he Ferma submo$ive of
X, corresponding to a (Z/m)-orbit Ac, and let f be the order of p in

(z/m).
( a.) MA is ordinary #4 IlPall=lla for each a e A with lla]l=i, 0<i<

(n--l)/2.
(b) MA is of Hodge-Witt type {= []pJal --Ilall=0, pJa]l-I]a]]:O, 1 or

IIpall--Ila I=0, --1 for each a e A with llall=i, O<i<n/2--1 and for each ],

f-1(c) M is supersingulr {= =0 IIPall=nf /2 for each a e A with IlaIl
=i, 0<_i<_(n--1)/2.

Corollary 2.4. The following conditions are all equivalent.
( ) M is ordinary and supersingular.
(ii) M is of Hodge-Witt type and supersingular.
(iii) Ilall=n/2 for each a e A.
Remark 2.5. If X is defined over C, (iii)<=> H=(M, C) is purely of

type (n 2, n 2).
3. Supersingular Fermat motives. Throughout the section, k=Fq of

characteristic p>0, F=Gal(/k) and X denotes the Fermat variety of
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dimension n=2r and of degree m over k.
3.1. Let (h denote the geometric Frobenius of X relative to k=F.

Put
P(T)=det(1--(*TIH(M,, Q))=det(1-. *TIH(M/W)).

Then the decomposition X M defines a actorization
det(1--*TIH(X, Q3)=det(1-*TIH(X/W)) [I P(T).

A

Assume now that k=F contains all the m-th roots o unity. Then we
have

P(T)= V[ (1-](a)T)
aA

for each (Z/m)-orbit A. (cf. Weil [8]). Here ](a) denotes the Jacobi
sum defined by

y’(a) (--1) Z(v)’.. .X(v+)/,
where the summation is taken over all the (n+l)-tuples (v, ..., v/)e
(k)/ subject to the relation v+...+v+=-l" a=(ao, a,.. ",an/) and
Z" koQ is a multiplicative character of order m.

3.2. Let CH(X) and CH(X) denote the Chow group o rational
equivalence classes of algebraic cycles o codimension r on X and X, re-
spectively. Recall that there is defined a cycle map CH(X)-H(X,, Z(r))
or each prime 1. The Tate conjecture ([6]) asserts that H(X, Q(r))r is
spanned by the image of the composite CHr(X)--+CH(X)--H(X, Q(r)).

Note that it ollows rom Tate’s theorem [7] together with the induc-
tive structure of Fermat varieties [5] that the action of * on H(X,, Q) is
semi-simple.

Let N(X)denote the group o numerical equivalence classes of alge-
braic cycles on X of codimension r. Then N(X) is a free Z-module of
finite rank and equipped with a non-degenerate symmetric bilinear form
induced by the intersection pairing. The decomposition X-(M defines
decompostion

CH(X) (R)z Z[--] (R)A CH(Ma) (R)zZ [--]
CH(X)(R)z Z[---] =(R)A CH(M’)(R)zZ[--] and

N(X)(R)z Z[-]--a N(M’’)(R)z Z [---].
Theorem 3.3. Let X be the Fermat variety of dimension n--2r and

of degree m over k, M the Fermat submotive of X, corresponding to a

(Z/m)-orbit AI and P(T)= ]-I, (1--aT). Then we have implications
[(i)@(v)@(vi)]g: [(ii)@(iii)@(iv)]

among the following assertions. If the Tate conjecture holds true for X,
these are all equivalent.

( ) M is supersingular.
(ii) There is a prime l:/:p such that the cycle map CH:(M,)(R)zQ--+

H(M,, Q(r)) is surjective.
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(iii) For all primes = p, the cycle map CHr(MA,) (R)zQt-+H(MA,, Q(r))
is surjective.

(iv) N(M,)(R)zZ[1/m]=/=O.
(v ) o/qr i8 a root of unity for any .
(vi) a/qr is a root of unity for some .
Corollary 3.4. If M is not supersingular, the cycle map CHr(M,)

(R)zQt--H(MA,, Qt(r)) is zero.
Corollary 3.5. Assume that m is prime. Then Bn(X)-r]Nr(X) i8

divisivle by m--1.
Corollary 3.6. We have

rkNr(X) <_l + A,
where the summation is taken over all the (Z/m)-orbit A?I such that

M is supersingular. If the Tare conjecture holds true for X we have the
equality

rkN(X) 1 + A.
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