27. Fermat Motives and the Artin-Tate Formula. I

By Noriyuki SUWA

Department of Mathematics, Tokyo Denki University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1991)

In this note, we mention some results on the Artin-Tate formula for Fermat motives in the higher dimensional cases, which was achieved by [4] and [10] in the 2-dimensional case. Detailed account will be published elsewhere.

1. Definition of Fermat motives (Shioda [4]). 1.1. Let k be a field and let X be the Fermat variety of dimension n and of degree m over k:

$$X: T_0^m + T_1^m + \cdots + T_{n+1}^m = 0 \subset P_k^{n+1}$$

We assume that (m, p) = 1 if k is of characteristic p > 0. Let μ_m denote the group of m-th root of unity in \bar{k} . The group $G = (\mu_m)^{n+2}/(\text{diagonal})$ acts naturally on $X_{\bar{k}} = X \otimes_k \bar{k}$. The character group \hat{G} of G is identified with the set

$$\left\{ a = (a_0, a_1, \cdots, a_{n+1}); a_i \in \mathbb{Z}/m, \sum_{i=0}^{n+1} a_i = 0 \right\};$$

Let $(\mathbb{Z}/m)^{\times}$ act on \hat{G} by $t\mathbf{a} = (ta_0, \dots, ta_{n+1}) \in \hat{G}$ for any $\mathbf{a} \in \hat{G}$ and $t \in (\mathbb{Z}/m)^{\times}$.

Let ζ_m be a fixed primitive *m*-th root of unity in \overline{Q} . For the $(\mathbb{Z}/m)^{\times}$ -orbit A of $\mathbf{a} = (a_0, \dots, a_{n+1}) \in \hat{G}$, define

$$p_A = \frac{1}{m^{n+1}} \sum_{g \in G} \operatorname{Tr}_{\boldsymbol{Q}(\boldsymbol{\zeta}_m^d)/\boldsymbol{Q}}(\boldsymbol{a}(g)^{-1})g \in \boldsymbol{Z}\left[\frac{1}{m}\right][G].$$

Here $d = \gcd(m, a_0, \dots, a_{n+1})$. Then p_A are idempotents, i.e.

$$p_{\scriptscriptstyle A} \cdot p_{\scriptscriptstyle B} = egin{cases} p_{\scriptscriptstyle A} & ext{if } A = B \ 0 & ext{if } A \neq B \end{pmatrix}, \quad \sum_{\scriptscriptstyle A \in O(\hat{G})} p_{\scriptscriptstyle A} = 1$$

where $O(\hat{G})$ denotes the set of $(\mathbb{Z}/m)^{\times}$ -orbits in \hat{G} . The pair $M_A = (X, p_A)$ defines a motive over k, called the *Fermat submotive* of X corresponding to A (Shioda [4], p. 125).

1.2. Define a subset \mathfrak{A} of \hat{G} by

$$\mathfrak{A} = \{ \boldsymbol{a} = (a_0, \cdots, a_{n+1}) \in \hat{G} ; a_i \neq 0 \text{ for all } i \}.$$

For each $a \in \mathfrak{A}$, let

$$\|\boldsymbol{a}\| = \sum_{i=1}^{n+1} \left\langle \frac{a_i}{m} \right\rangle - 1$$

where $\langle x \rangle$ stands for the fractional part of $x \in Q/Z$.

1.3. Let R be a ring, in which m is invertible, and let F be a contravariant functor from a category of varieties over k to the category of Rmodules. For a Fermat submotive $M_A = (X, p_A)$ of X, define

$$F(M_A) = \operatorname{Im} [p_A^* : F(X) \to F(X)].$$

Example 1.4. Let l be prime number different from the characteristic of k. The *l*-adic étale cohomology groups $H^{\cdot}(X, Q_{i}(i))$, $i \in \mathbb{Z}$; moreover, if l

is prime to m, $H^{\cdot}(X, \mathbb{Z}/l^{r}(i))$, $H^{\cdot}(X, \mathbb{Z}_{l}(i))$, $H^{\cdot}(X, \mathbb{Q}_{l}/\mathbb{Z}_{l}(i))$, $i \in \mathbb{Z}$.

Example 1.5. The de Rham cohomology groups $H_{DR}^{i}(X/k)$, or the Hodge spectral sequence $E_{1}^{i,j} = H^{j}(X, \Omega_{X}^{i}) \Rightarrow H_{DR}^{i+j}(X/k)$.

For the examples below, assume that k is perfect of characteristic p > 0.

Example 1.6. The crystalline cohomology groups $H^{\cdot}(X/W_n)$, $H^{\cdot}(X/W)$, $H^{\cdot}(X/W)_K$, or the slope spectral sequences $E_1^{i,j} = H^j(X, W_n \Omega_X^i) \Rightarrow H^{\cdot}(X/W_n)$, and $E_1^{i,j} = H^j(X, W \Omega_X^i) \Rightarrow H^{\cdot}(X/W)$ (cf. [1], Ch. II).

Example 1.7. The logarithmic Hodge-Witt cohomology groups $H^{\cdot}(X, \mathbb{Z}/p^{r}(i)) = H^{\cdot-i}(X, W_{r}\Omega_{X,\log}^{i}), \quad H^{\cdot}(X, \mathbb{Z}_{p}(i)) = \lim_{r} H^{\cdot}(X, \mathbb{Z}/p^{r}(i))$ and $H^{\cdot}(X, \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)) = \lim_{r} H^{\cdot}(X, \mathbb{Z}/p^{r}(i)), \quad i \in \mathbb{N}$ (cf. [2], Ch. IV. 3, [9], Ch. I).

2. Fermat motives in characteristic p > 0 ([10]). Throughout the section, X denotes the Fermat variety of dimension n and of degree m over $k=F_p$.

2.1. Let M_A be a Fermat submotive of X. We call the slopes and the Newton polygon of the F-crystal $(H^n(M_A/W), F)$ (cf. [3]) the slopes and the Newton polygon of M_A , respectively.

Definition 2.2. Let M_A be the Fermat submotive of X, corresponding to a $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$.

(a) M_A is said to be ordinary if the Newton polygon and the Hodge polygon of M_A coincide.

(b) M_A is said to be supersingular if the Newton polygon has the pure slope n/2.

(c) M_A is said to be of Hodge-Witt type if $H^j(M_A, W\Omega^i)$ is of finite type over W for all pairs (i, j) with i+j=n (cf. [2], Ch. IV, 4.6).

Proposition 2.3 ([10], Ch. II, 3). Let M_A be the Fermat submotive of X, corresponding to a $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$, and let f be the order of p in $(\mathbb{Z}/m)^{\times}$.

(a) M_A is ordinary $\Leftrightarrow ||pa|| = ||a||$ for each $a \in A$ with ||a|| = i, $0 \le i \le (n-1)/2$.

(b) M_A is of Hodge-Witt type $\Leftrightarrow ||p^j a|| - ||a|| = 0$, $||p^j a|| - ||a|| = 0, 1$ or $||p^j a|| - ||a|| = 0, -1$ for each $a \in A$ with $||a|| = i, 0 \le i \le n/2 - 1$ and for each $j, 0 \le j \le f$.

(c) M_A is supersingular $\Leftrightarrow \sum_{j=0}^{f-1} \|p^j \mathbf{a}\| = nf/2$ for each $\mathbf{a} \in A$ with $\|\mathbf{a}\| = i, 0 \le i \le (n-1)/2$.

Corollary 2.4. The following conditions are all equivalent.

(i) M_A is ordinary and supersingular.

(ii) M_A is of Hodge-Witt type and supersingular.

(iii) $\|\boldsymbol{a}\| = n/2$ for each $\boldsymbol{a} \in \boldsymbol{A}$.

Remark 2.5. If X is defined over C, (iii) $\Leftrightarrow H^n(M_A, C)$ is purely of type (n/2, n/2).

3. Supersingular Fermat motives. Throughout the section, $k=F_q$ of characteristic p>0, $\Gamma=\text{Gal}(\bar{k}/k)$ and X denotes the Fermat variety of

No. 4]

dimension n=2r and of degree m over k.

3.1. Let Φ denote the geometric Frobenius of X relative to $k=F_q$. Put

 $P_{A}(T) = \det(1 - \Phi^{*}T | H^{n}(M_{A,\bar{k}}, Q_{l})) = \det(1 - \Phi^{*}T | H^{n}(M_{A}/W)_{K}).$

Then the decomposition $X = \bigoplus_{A} M_{A}$ defines a factorization

 $\det(1-\Phi^*T|H^n(X_{\bar{k}},\boldsymbol{Q}_l)) = \det(1-\Phi^*T|H^n(X/W)_{\kappa}) = \prod P_{\boldsymbol{A}}(T).$

Assume now that $k = F_q$ contains all the *m*-th roots of unity. Then we have

$$P_A(T) = \prod_{\boldsymbol{a} \in A} (1 - j(\boldsymbol{a})T)$$

for each $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$ (cf. Weil [8]). Here j(a) denotes the Jacobi sum defined by

 $j(\boldsymbol{a}) = (-1)^n \sum \chi(v_1)^{a_1} \cdots \chi(v_{n+1})^{a_{n+1}},$

where the summation is taken over all the (n+1)-tuples $(v_1, \dots, v_{n+1}) \in (k^{\times})^{n+1}$ subject to the relation $v_1 + \dots + v_{n+1} = -1$: $\boldsymbol{a} = (a_0, a_1, \dots, a_{n+1})$ and $\boldsymbol{\chi} : k^{\times} \to \bar{\boldsymbol{Q}}^{\times}$ is a multiplicative character of order m.

3.2. Let $CH^{r}(X)$ and $CH^{r}(X_{\bar{k}})$ denote the Chow group of rational equivalence classes of algebraic cycles of codimension r on X and $X_{\bar{k}}$, respectively. Recall that there is defined a cycle map $CH^{r}(X_{\bar{k}}) \rightarrow H^{n}(X_{\bar{k}}, Z_{l}(r))$ for each prime l. The Tate conjecture ([6]) asserts that $H^{n}(X_{\bar{k}}, Q_{l}(r))^{r}$ is spanned by the image of the composite $CH^{r}(X) \rightarrow CH^{r}(X_{\bar{k}}) \rightarrow H^{n}(X_{\bar{k}}, Q_{l}(r))$.

Note that it follows from Tate's theorem [7] together with the inductive structure of Fermat varieties [5] that the action of Φ^* on $H^n(X_{\bar{k}}, Q_i)$ is semi-simple.

Let $N^r(X_{\bar{k}})$ denote the group of numerical equivalence classes of algebraic cycles on $X_{\bar{k}}$ of codimension r. Then $N^r(X_{\bar{k}})$ is a free Z-module of finite rank and equipped with a non-degenerate symmetric bilinear form induced by the intersection pairing. The decomposition $X = \bigoplus_A M_A$ defines decomposition:

$$CH^{r}(X) \otimes_{Z} Z\left[\frac{1}{m}\right] = \bigoplus_{A} CH^{r}(M_{A}) \otimes_{Z} Z\left[\frac{1}{m}\right],$$

$$CH^{r}(X_{\bar{k}}) \otimes_{Z} Z\left[\frac{1}{m}\right] = \bigoplus_{A} CH^{r}(M_{A,\bar{k}}) \otimes_{Z} Z\left[\frac{1}{m}\right] \text{ and }$$

$$N^{r}(X_{\bar{k}}) \otimes_{Z} Z\left[\frac{1}{m}\right] = \bigoplus_{A} N^{r}(M_{A,\bar{k}}) \otimes_{Z} Z\left[\frac{1}{m}\right].$$

Theorem 3.3. Let X be the Fermat variety of dimension n=2r and of degree m over k, M_A the Fermat submotive of X, corresponding to a $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$ and $P_A(T) = \prod_a (1-\alpha T)$. Then we have implications $[(i) \Leftrightarrow (\mathbf{v}) \Leftrightarrow (\mathbf{v}i)] \Leftrightarrow [(ii) \Leftrightarrow (iv)]$

among the following assertions. If the Tate conjecture holds true for X, these are all equivalent.

(i) M_A is supersingular.

(ii) There is a prime $l \neq p$ such that the cycle map $CH^r(M_{A,\bar{k}}) \otimes_{\mathbb{Z}} Q_l \rightarrow H^n(M_{A,\bar{k}}, Q_l(r))$ is surjective.

106

No. 4]

(iii) For all primes $l \neq p$, the cycle map $CH^r(M_{A,\bar{k}}) \otimes_{\mathbb{Z}} Q_l \rightarrow H^n(M_{A,\bar{k}}, Q_l(r))$ is surjective.

(iv) $N^r(M_{A,\bar{k}}) \otimes_{\mathbb{Z}} \mathbb{Z}[1/m] \neq 0.$

(v) α/q^r is a root of unity for any α .

(vi) α/q^r is a root of unity for some α .

Corollary 3.4. If M_A is not supersingular, the cycle map $CH^r(M_{A,\bar{k}})$ $\otimes_{\mathbb{Z}} Q_i \rightarrow H^n(M_{A,\bar{k}}, Q_i(r))$ is zero.

Corollary 3.5. Assume that m is prime. Then $B_n(X) - rkN^r(X_{\bar{k}})$ is divisivle by m-1.

Corollary 3.6. We have

$$rkN^r(X_{\bar{k}}) \leq 1 + \#A,$$

where the summation is taken over all the $(\mathbb{Z}/m)^{\times}$ -orbit $A \subset \mathfrak{A}$ such that M_A is supersingular. If the Tate conjecture holds true for X we have the equality

$$rkN^{r}(X_{\bar{k}}) = 1 + \#A.$$

References

- [1] L. Illusie: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. Ecole Norm. Sup., 4^e serie 12, pp. 501-661 (1979); Math., pp. 20-72 (1983).
- [2] L. Illusie and M. Raynaud: Les suites spectrales associées au complexe de de Rham-Witt. Publ. Math. IHES, 57, 73-212 (1983).
- [3] N. Katz: Slope filtration of F-crystals. Journée de géométrie algébrique de Rennes. Astérisque, 63, Soc. Math. de France, 113-164 (1979).
- [4] T. Shioda: Some observations on Jacobi sums. Advanced Studies in Pure Math., 12, North Holland, Kinokuniya, pp. 119-135 (1987).
- [5] T. Shioda and T. Katsura: On Fermat varieties. Tohoku Math. J., 31, 97-115 (1979).
- [6] J. Tate: Algebraic cycles and poles of zeta functions. Arithmetic Algebraic Geometry. Harper and Row, pp. 93-110 (1965).
- [7] ——: Endomorphisms of abelian varieties over finite fields. Invent. Math., 2, 133-144 (1966).
- [8] A. Weil: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55, 497-508 (1949).
- [9] M. Gros and N. Suwa: Application d'Abel-Jacobi p-adique et cycles algébriques. Duke Math. J., 57, 579-613 (1988).
- [10] N. Suwa and N. Yui: Arithmetic of Fermat varieties. I. Fermat motives and p-adic cohomologies. MSRI Preprint Series, Berkeley (1988).

107