27. Fermat Motives and the Artin-Tate Formula. I

By Noriyuki Suwa
Department of Mathematics, Tokyo Denki University
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1991)

In this note, we mention some results on the Artin-Tate formula for Fermat motives in the higher dimensional cases, which was achieved by [4] and [10] in the 2-dimensional case. Detailed account will be published elsewhere.

1. Definition of Fermat motives (Shioda [4]). 1.1. Let k be a field and let X be the Fermat variety of dimension n and of degree m over k :

$$
X: T_{0}^{m}+T_{1}^{m}+\cdots+T_{n+1}^{m}=0 \subset \boldsymbol{P}_{k}^{n+1}
$$

We assume that (m, p)=1 if k is of characteristic $p>0$. Let μ_{m} denote the group of m-th root of unity in \bar{k}. The group $G=\left(\mu_{m}\right)^{n+2} /($ diagonal) acts naturally on $X_{\bar{k}}=X \otimes_{k} \bar{k}$. The character group \hat{G} of G is identified with the set

$$
\left\{\boldsymbol{a}=\left(a_{0}, a_{1}, \cdots, a_{n+1}\right) ; a_{i} \in \boldsymbol{Z} / m, \sum_{i=0}^{n+1} a_{i}=0\right\} ;
$$

Let $(\boldsymbol{Z} / m)^{\times}$act on \hat{G} by $t \boldsymbol{a}=\left(t a_{0}, \cdots, t a_{n+1}\right) \in \hat{G}$ for any $\boldsymbol{a} \in \hat{G}$ and $t \in(\boldsymbol{Z} / m)^{\times}$.
Let ζ_{m} be a fixed primitive m-th root of unity in $\overline{\boldsymbol{Q}}$. For the $(\boldsymbol{Z} / m)^{\times}$orbit A of $\boldsymbol{a}=\left(a_{0}, \cdots, a_{n+1}\right) \in \hat{G}$, define

$$
p_{A}=\frac{1}{m^{n+1}} \sum_{g \in G} \operatorname{Tr}_{\boldsymbol{Q}\left(S_{m}^{d}\right) / \boldsymbol{Q}}\left(\boldsymbol{a}(g)^{-1}\right) g \in \boldsymbol{Z}\left[\frac{1}{m}\right][G]
$$

Here $d=\operatorname{gcd}\left(m, a_{0}, \cdots, a_{n+1}\right)$. Then p_{A} are idempotents, i.e.

$$
p_{A} \cdot p_{B}=\left\{\begin{array}{ll}
p_{A} & \text { if } A=B \\
0 & \text { if } A \neq B
\end{array}, \sum_{A \in O(\hat{\theta})} p_{A}=1\right.
$$

where $O(\hat{G})$ denotes the set of $(Z / m)^{\times}$-orbits in \hat{G}. The pair $M_{A}=\left(X, p_{A}\right)$ defines a motive over k, called the Fermat submotive of X corresponding to A (Shioda [4], p. 125).
1.2. Define a subset \mathfrak{A} of \hat{G} by

$$
\mathfrak{U}=\left\{\boldsymbol{a}=\left(a_{0}, \cdots, a_{n+1}\right) \in \hat{G} ; a_{i} \neq 0 \text { for all } i\right\} .
$$

For each $\boldsymbol{a} \in \mathfrak{U}$, let

$$
\|\boldsymbol{a}\|=\sum_{i=1}^{n+1}\left\langle\frac{a_{i}}{m}\right\rangle-1
$$

where $\langle x\rangle$ stands for the fractional part of $x \in \boldsymbol{Q} / \boldsymbol{Z}$.
1.3. Let R be a ring, in which m is invertible, and let F be a contravariant functor from a category of varieties over k to the category of R modules. For a Fermat submotive $M_{A}=\left(X, p_{A}\right)$ of X, define

$$
F\left(M_{A}\right)=\operatorname{Im}\left[p_{A}^{*}: F(X) \rightarrow F(X)\right] .
$$

Example 1.4. Let l be prime number different from the characteristic of k. The l-adic étale cohomology groups $H^{\cdot}\left(X, \boldsymbol{Q}_{l}(i)\right), i \in Z$; moreover, if l
is prime to $m, H^{\cdot}\left(X, \boldsymbol{Z} / l^{r}(i)\right), H^{\cdot}\left(X, \boldsymbol{Z}_{l}(i)\right), H^{\cdot}\left(X, \boldsymbol{Q}_{l} / \boldsymbol{Z}_{l}(i)\right), i \in \boldsymbol{Z}$.
Example 1.5. The de Rham cohomology groups $H_{D R}(X / k)$, or the Hodge spectral sequence $E_{1}^{i, j}=H^{j}\left(X, \Omega_{X}^{i}\right) \Rightarrow H_{D R}^{i+j}(X / k)$.

For the examples below, assume that k is perfect of characteristic $p>0$.

Example 1.6. The crystalline cohomology groups $H^{\cdot}\left(X / W_{n}\right), H^{\cdot}(X / W)$, $H^{\cdot}(X / W)_{K}$, or the slope spectral sequences $E_{1}^{i, j}=H^{j}\left(X, W_{n} \Omega_{X}^{i}\right) \Rightarrow H^{\cdot}\left(X / W_{n}\right)$, and $E_{1}^{i, j}=H^{j}\left(X, W \Omega_{X}^{i}\right) \Rightarrow H^{\cdot}(X / W)$ (cf. [1], Ch. II).

Example 1.7. The logarithmic Hodge-Witt cohomology groups
$H^{\cdot}\left(X, \boldsymbol{Z} / p^{r}(i)\right)=H^{\cdot-i}\left(X, W_{r} \Omega_{X, \log }^{i}\right), \quad H^{\cdot}\left(X, \boldsymbol{Z}_{p}(i)\right)=\underset{r}{\lim _{r}} H^{\cdot}\left(X, \boldsymbol{Z} / p^{r}(i)\right) \quad$ and $H^{\cdot}\left(X, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}(i)\right)=\underline{\lim _{r}} H^{\cdot}\left(X, \boldsymbol{Z} / p^{r}(i)\right), \quad i \in \boldsymbol{N} \quad$ (cf. [2], Ch. IV. 3, [9], Ch. I).
2. Fermat motives in characteristic $\boldsymbol{p}>0$ ([10]). Throughout the section, X denotes the Fermat variety of dimension n and of degree m over $k=\boldsymbol{F}_{p}$.
2.1. Let M_{A} be a Fermat submotive of X. We call the slopes and the Newton polygon of the F-crystal ($\left.H^{n}\left(M_{A} / W\right), F\right)$ (cf. [3]) the slopes and the Newton polygon of M_{A}, respectively.

Definition 2.2. Let M_{A} be the Fermat submotive of X, corresponding to a $(\boldsymbol{Z} / m)^{\times}$-orbit $A \subset \mathfrak{H}$.
(a) M_{A} is said to be ordinary if the Newton polygon and the Hodge polygon of M_{A} coincide.
(b) M_{A} is said to be supersingular if the Newton polygon has the pure slope $n / 2$.
(c) M_{A} is said to be of Hodge-Witt type if $H^{j}\left(M_{A}, W \Omega^{i}\right)$ is of finite type over W for all pairs (i, j) with $i+j=n$ (cf. [2], Ch. IV, 4.6).

Proposition 2.3 ([10], Ch. II, 3). Let M_{A} be the Fermat submotive of X, corresponding to $a(\boldsymbol{Z} / m)^{\times}$-orbit $A \subset \mathfrak{A}$, and let f be the order of p in $(\boldsymbol{Z} / m)^{\times}$.
(a) M_{A} is ordinary $\Leftrightarrow\|p \boldsymbol{a}\|=\|\boldsymbol{a}\|$ for each $\boldsymbol{a} \in A$ with $\|\boldsymbol{a}\|=i, 0 \leq i \leq$ $(n-1) / 2$.
(b) M_{A} is of Hodge-Witt type $\Leftrightarrow\left\|p^{j} \boldsymbol{a}\right\|-\|\boldsymbol{a}\|=0,\left\|p^{j} \boldsymbol{a}\right\|-\|\boldsymbol{a}\|=0,1$ or $\left\|p^{j} \boldsymbol{a}\right\|-\|\boldsymbol{a}\|=0,-1$ for each $\boldsymbol{a} \in A$ with $\|\boldsymbol{a}\|=i, 0 \leq i \leq n / 2-1$ and for each j, $0<j<f$.
(c) M_{A} is supersingular $\Leftrightarrow \sum_{j=0}^{f=1}\left\|p^{j} \boldsymbol{a}\right\|=n f / 2$ for each $\boldsymbol{a} \in A$ with $\|\boldsymbol{a}\|$ $=i, 0 \leq i \leq(n-1) / 2$.

Corollary 2.4. The following conditions are all equivalent.
(i) M_{A} is ordinary and supersingular.
(ii) M_{A} is of Hodge-Witt type and supersingular.
(iii) $\|\boldsymbol{a}\|=n / 2$ for each $\boldsymbol{a} \in A$.

Remark 2.5. If X is defined over C, (iii) $\Leftrightarrow H^{n}\left(M_{A}, C\right)$ is purely of type ($n / 2, n / 2$).
3. Supersingular Fermat motives. Throughout the section, $k=\boldsymbol{F}_{q}$ of characteristic $p>0, \Gamma=\operatorname{Gal}(\bar{k} / k)$ and X denotes the Fermat variety of
dimension $n=2 r$ and of degree m over k.
3.1. Let Φ denote the geometric Frobenius of X relative to $k=\boldsymbol{F}_{q}$. Put

$$
P_{A}(T)=\operatorname{det}\left(1-\Phi^{*} T \mid H^{n}\left(M_{A, \bar{k}}, \boldsymbol{Q}_{V}\right)\right)=\operatorname{det}\left(1-\Phi^{*} T \mid H^{n}\left(M_{A} / W\right)_{K}\right) .
$$

Then the decomposition $X=\oplus_{A} M_{A}$ defines a factorization

$$
\operatorname{det}\left(1-\Phi^{*} T \mid H^{n}\left(X_{\bar{k}}, \boldsymbol{Q}_{l}\right)\right)=\operatorname{det}\left(1-\Phi^{*} T \mid H^{n}(X / W)_{K}\right)=\prod_{A} P_{A}(T) .
$$

Assume now that $k=\boldsymbol{F}_{q}$ contains all the m-th roots of unity. Then we have

$$
P_{A}(T)=\prod_{\boldsymbol{a} \in A}(1-j(\boldsymbol{a}) T)
$$

for each $(\boldsymbol{Z} / m)^{\times}$-orbit $A \subset \mathfrak{A}$ (cf. Weil [8]). Here $j(\boldsymbol{a})$ denotes the Jacobi sum defined by

$$
j(\boldsymbol{a})=(-1)^{n} \sum \chi\left(v_{1}\right)^{a_{1}} \ldots \chi\left(v_{n+1}\right)^{a_{n+1}},
$$

where the summation is taken over all the $(n+1)$-tuples $\left(v_{1}, \cdots, v_{n+1}\right) \in$ $\left(k^{\times}\right)^{n+1}$ subject to the relation $v_{1}+\cdots+v_{n+1}=-1: \boldsymbol{a}=\left(a_{0}, a_{1}, \cdots, a_{n+1}\right)$ and $\chi: k^{\times} \rightarrow \overline{\boldsymbol{Q}}^{\times}$is a multiplicative character of order m.
3.2. Let $C H^{r}(X)$ and $C H^{r}\left(X_{\bar{k}}\right)$ denote the Chow group of rational equivalence classes of algebraic cycles of codimension r on X and $X_{\bar{k}}$, respectively. Recall that there is defined a cycle map $C H^{r}\left(X_{\bar{k}}\right) \rightarrow H^{n}\left(X_{\bar{k}}, Z_{l}(r)\right)$ for each prime l. The Tate conjecture ([6]) asserts that $H^{n}\left(X_{\bar{k}}, \boldsymbol{Q}_{l}(r)\right)^{r}$ is spanned by the image of the composite $C H^{r}(X) \rightarrow C H^{r}\left(X_{\bar{k}}\right) \rightarrow H^{n}\left(X_{\bar{k}}, \boldsymbol{Q}_{l}(r)\right)$.

Note that it follows from Tate's theorem [7] together with the inductive structure of Fermat varieties [5] that the action of Φ^{*} on $H^{n}\left(X_{\bar{k}}, \boldsymbol{Q}_{l}\right)$ is semi-simple.

Let $N^{r}\left(X_{\bar{k}}\right)$ denote the group of numerical equivalence classes of algebraic cycles on $X_{\bar{k}}$ of codimension r. Then $N^{r}\left(X_{\bar{k}}\right)$ is a free Z-module of finite rank and equipped with a non-degenerate symmetric bilinear form induced by the intersection pairing. The decomposition $X=\oplus_{A} M_{A}$ defines decompostion:

$$
\begin{aligned}
& C H^{r}(X) \otimes_{Z} Z\left[\frac{1}{m}\right]=\underset{A}{\oplus} C H^{r}\left(M_{A}\right) \otimes_{Z} Z\left[\frac{1}{m}\right] \\
& C H^{r}\left(X_{\bar{k}}\right) \otimes_{Z} Z\left[\frac{1}{m}\right]=\underset{A}{\oplus} C H^{r}\left(M_{A, \bar{k}}\right) \otimes_{Z} Z\left[\frac{1}{m}\right] \text { and } \\
& N^{r}\left(X_{\bar{k}}\right) \otimes_{Z} Z\left[\frac{1}{m}\right]=\oplus_{A} N^{r}\left(M_{A, \bar{k}}\right) \otimes_{Z} Z\left[\frac{1}{m}\right]
\end{aligned}
$$

Theorem 3.3. Let X be the Fermat variety of dimension $n=2 r$ and of degree m over k, M_{A} the Fermat submotive of X, corresponding to a $(Z / m)^{\times}$-orbit $A \subset \mathfrak{A}$ and $P_{A}(T)=\prod_{\alpha}(1-\alpha T)$. Then we have implications

$$
[(\mathrm{i}) \Leftrightarrow(\mathrm{v}) \Leftrightarrow(\mathrm{vi})] \Leftarrow[(\mathrm{ii}) \Leftrightarrow(\mathrm{iii}) \Leftrightarrow(\mathrm{iv})]
$$

among the following assertions. If the Tate conjecture holds true for X, these are all equivalent.
(i) M_{A} is supersingular.
(ii) There is a prime $l \neq p$ such that the cycle map $\operatorname{CH}^{r}\left(M_{A, \bar{k}}\right) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}_{l} \rightarrow$ $H^{n}\left(M_{A, \bar{k}}, \boldsymbol{Q}_{l}(r)\right)$ is surjective.
(iii) For all primes $l \neq p$, the cycle $\operatorname{map} \operatorname{CH}^{r}\left(M_{A, \bar{k}}\right) \otimes_{z} \boldsymbol{Q}_{l} \rightarrow H^{n}\left(M_{A, \bar{k}}, \boldsymbol{Q}_{l}(r)\right)$ is surjective.
(iv) $N^{r}\left(M_{A, \bar{k}}\right) \otimes_{Z} Z[1 / m] \neq 0$.
(v) α / q^{r} is a root of unity for any α.
(vi) α / q^{r} is a root of unity for some α.

Corollary 3.4. If M_{A} is not supersingular, the cycle map $C H^{r}\left(M_{A, \bar{k}}\right)$ $\otimes_{\boldsymbol{Z}} \boldsymbol{Q}_{l} \rightarrow H^{n}\left(M_{A, \bar{k}}, \boldsymbol{Q}_{l}(r)\right)$ is zero.

Corollary 3.5. Assume that m is prime. Then $B_{n}(X)-r k N^{r}\left(X_{\bar{k}}\right)$ is divisivle by $m-1$.

Corollary 3.6. We have

$$
r k N^{r}\left(X_{\bar{k}}\right) \leq 1+\# A,
$$

where the summation is taken over all the $(Z / m)^{\times}$-orbit $A \subset\{$ such that M_{A} is supersingular. If the Tate conjecture holds true for X we have the equality

$$
r k N^{r}\left(X_{\bar{k}}\right)=1+\# A .
$$

References

[1] L. Illusie: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. Ecole Norm. Sup., 4^{e} serie 12, pp. 501-661 (1979) ; Math., pp. 20-72 (1983).
[2] L. Illusie and M. Raynaud: Les suites spectrales associées au complexe de de Rham-Witt. Publ. Math. IHES, 57, 73-212 (1983).
[3] N. Katz: Slope filtration of F-crystals. Journée de géométrie algébrique de Rennes. Astérisque, 63, Soc. Math. de France, 113-164 (1979).
[4] T. Shioda: Some observations on Jacobi sums. Advanced Studies in Pure Math., 12, North Holland, Kinokuniya, pp. 119-135 (1987).
[5] T. Shioda and T. Katsura: On Fermat varieties. Tohoku Math. J., 31, 97-115 (1979).
[6] J. Tate: Algebraic cycles and poles of zeta functions. Arithmetic Algebraic Geometry. Harper and Row, pp. 93-110 (1965).
[7] - : Endomorphisms of abelian varieties over finite fields. Invent. Math., 2, 133-144 (1966).
[8] A. Weil: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55, 497-508 (1949).
[9] M. Gros and N. Suwa: Application d'Abel-Jacobi p-adique et cycles algébriques. Duke Math. J., 57, 579-613 (1988).
[10] N. Suwa and N. Yui: Arithmetic of Fermat varieties. I. Fermat motives and p-adic cohomologies. MSRI Preprint Series, Berkeley (1988).

