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In this note, we announce a structure theorem on the graded ring of
modular forms on the bounded symmetric domain of type I, with respect
to the principal congruence subgroup of level (l+i). Relations between
the period map of certain K3 surfaces, the hypergeometric functions and
the present theorem are studied in [8].

The classical bounded symmetric domain of type I, is defined by

D’-- {W:(,w) l _, .k_2, W- W* }2i
0 where W*=W.

The group

U(2, 2)’= g e GL(4, C)lg*Jg=J, J=
-12

acts on D by

g. W=(AW+B)(CW+D) -1, where W e D, g--
C

e U(2, 2),

and the transpose operator
T W--tW, W e D,

also acts on D; these actions satisfy
(TgT). W--. W.

Hence we have
Aut(D)_[V(2, 2) /{center}] (T}, (T}=id, T}.

Let F be the modular group.
F:----{g e GL(4, Z[i])]g*Jg-J},

and let F(1 + i) le the congruence subgroup
F(1 +i) ={g e F]gI4 mod (1+i)},

of level (1 +i). It is known that F is generated by matrices of the following
three forms:

(0A (A*)-O ), ( ) and J=(_i2
where A e GL(., Z[i]) and B=B* M(2, 2, Z[i]) F(l+i) is generated by
matrices of the following three forms’

( (A*)-O 1)’ ( ) and

where A GL(2, Z[i]), A=I modl+i, B=B* e M(2,., (l + i)Z[i]). We set
Fr:=F(T), Fr(I+i):=F(I+i)(T).
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Definition. Let A be a subgroup, of Fr of finite index, and Z’ A--(i)
={___1, ___i} be a homomorphism. A ho!omorphic function f on D is called

a modular form of weight 2k relative to. A with character Z, if the following
condition is satisfied"

f(g. W) =X(g){det (CW+,D)}2f(W),
where g--gTJeA(jeZ2), g-(cA DB).

The theta function with the characteristic (a, b)(a, b e Z[i]) is defined
by

0[](W)’= el(n+ 1 *W(n+ 1 a)+2Re{( 1 b)*n}]ez 1+i a/ i + i 1 +i
where W e D and e[x]----exp(ix). These functions have the following
properties"

(i) O[ a ](W)=O[ab](W), where/,e (i),
b

(ii) o[a+r] (tbr)])[ab](W)’ where r, s e (1 +i)Z[i]2,

(iii) if tabe(l/i)Z[i], then [](W)vanishes.
Proposition 1. The theta functions are modular forms of weight 2

relative to, Fr(l+i) with the character det" g-gT-det(g).
Proof. The assertion can be easily checked for each generators by

the following facts.

(A 0 )AeGL(2, Z[i]), then(a) If g e F is in the form
0 (A*)-

0 (g.W)=O
A- b

(I B), B=B*e M(2, 2, Z[i]), then(b) if g is in the form
0 I

B22/

(c) O[](J. W)=-det(W)O[bal(W),

By the roerties (i), (ii) and (iii), there are only en linearly inde-
penden heta functions hey are, for example, those with characteristics
(a, b) such that a, b e {0, 1} and a.b=O mod2. The ten functions satisfy
quadratic relations as we see in the ollowing.

Proposition 2. The theta functions satisfy the following relations"

]](W)e[ca+db]=O,
a, e {0, } O
taboo rood

for c, d e {0, 1}, cd=l.
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Remark :. The proposition gives six linear relations between the
squares o ten linearly independent theta functions; five relations among
the six are linearly independent.

To prove Proposition 2, we need the following lemma, which is a direct
consequence of the orthogonality of characters.

Lemma 4. Let L1 and L2 be two commensurable lattices in C.
Suppose that f is a function defined on L--LI+L2 for which eLf(n) is
absolutely convergent. Then the summations of f over L and L are
related as ollows

f(nl)-[L L]-’ { s(nf+r)f(nf+r)},
nlL1 s,r nfL

where s run over characters of L/L, r run over L/L.
Proof of Proposition 2. Apply Lemma 4 for the data

L’=M(2,2, Z[i]) and L’- 1 L,( I 1)1+i -1 1
1 M),W(X+lM))+2ie{tr((_l+if(X)" e[tr((X"+1+i

where X (., % C), M=(m, ), =(m, m) m e Z.
Let Fr(l+i)\D be the Satake compa,ctifica.tion o the quotient spa.ce

Fr(I+i)\D. Consider a holomorphic map F’ Fr(I+i)\D-+P defined by
W [..., D’] (W), ],

where the O[’]’s are ten linearly independent theta functions. By Remark
3, the image is in a 4-dimensional linear subspace of P, which will be
denoted by Y. Let F :Lr(I+i)\D-+Y be the map. induced by F’. Now we
state the main result of the present paper.

Theorem 5. The .map F extends to an isomorphism between Fr(1 +i)\D
and Y(_ p4).

Proof. ( 1 ) We first show that the map F is well defined. We have
to study the zeros of the theta functions. Consider the theta function

(w)

aad the involution

T’= 1
i TeFr(l+i).

1
The transformation formula (a) in Proposition I and the property (ii)
leads to

O [1](w, ’w,) --011](
\W21 W22] \i22

Hence @[1] has zeros along the variety r(l +i).S where
S ={W=(W) e

is the set of fixed points of 7. It is proved in [2] that they are the only
zeros of 0[1] and that they are simple. Since any non-zero theta function
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is transformed into (911], up to a non-zero factor, by an element g e F, the
set of zeros is a part of/’r’S. Let us call each variety g.S a mirror for
g?g-e Ft. One can show that, for any point in D, at most four mirrors
pass through the point. Thus F is well defined on D modulo Fr(1 +i). On

(v 0), the theta function 0[](W)reduces tothe boundary of type W-- ioo

[] [a2](i)2, wherea=(al) (12)0 (w)O b2 a2 b= and 9 is Jacobi’s theta con-

stant. The behavior of 9(w) shows that the map F is well defined on the
boundary. Since every Fr(1 +/)-rational boundary component can be trans-
formed into the above by an action of Fr, we conclude that F is well defined
on the Satake compactification.

(2) We next show that F is locally biholomorphic in Fr(l+i)/D.
Let P e D be the intersection of four mirrors which are sets of zeros of
four theta functions, say, 0[1], ..., [4]. Since each of the four theta
functions (9[]] (1<__]4) has simple zeros along the corresponding mirrors,
which can be seen to be normally crossing, four functions []] (W) (1 <_] <_4)
can be regarded as a system of local coordinates of Fr(l+i)\D at the
projection P of P. Thus F is locally biholomorphic at P.

( 3 ) Finally we prove that F is bioholomorphic. Since F is an open
map, F is a covering map of P’. In the situation of (2), one can see that
the point P is the unique intersection point of the four mirrors. Thus we
have F-(F(P))={P}, which implies that the sheet number of the covering

map is 1 and that F is biholomorphic.
Let Mod2(l+i) denote the vector space of modular forms of weight 2k

relative to _Fr(1 + i) with character det and let Mod (1 + i) be the graded ring"

Mod (1 + i)" @ Mod2(1 + i).
k>0

By Theorem 5 we can easily lead the following corollary"

Corollary 6. Any five linearly independent modular forms, which
are squares of theta functions, are free generators of the graded ring
Mod (1 + i).

Remark 7. The isomorphism F Fr(1 +i)\DoY (- p4) connects the
analytic moduli and the algebraic moduli of a 4-dimensional family of K3
surfaces which are double covers of P branching along 6 lines. For more
details, see [8] and [6].
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