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1. Introduction. Let (t) be a time-dependent bounded space do-
main in R (m=2 or 3) whose boundary 3f2(t) consists of two components,
namely, 39(t)--F0 U F(t). Here F0 is the inner boundary and F(t) is the
outer one. Moreover, these two boundaries do not intersect each other.
We denote by K the compact set which is bounded by F0. Let u--u(x, ),
O--O(x, t) and p--p(x, ) be the velocity of the viscous fluid, the temperature
and the pressure, respectively. We consider the heat convection equation
(HC) of Boussinesq approximation in D= (t){t} with boundary con-

ditions

( 1 ) u]=(x, ), ]ro--T0>0, [r =0 or any e (0, T).
In our previous paper [4], we have proven the unique existence of the

time-periodic strong solution of (HC) with (1), provided the domain
and the boundary dat (x, ) both vary periodically with period T. The
purpose of this paper is to show the asymptotic stability of the periodic
solution which is obtained in [4].

2. Assumptions and results. We make some assumptions"
(A1) For any fixed )0,/($) nd/0 are both simple closed curves (or

surfaces) nd also they are of class C.
(A2) /() {} (0T) changes smoothly (say, of class C’) with respect

to . (See, Assumptions II and III in [4].)
(A3) g(x) is a bounded and continuous vector unction in R\int K.
(A4) (x, ) is sufficiently smooth in x and $. Moreover, it satisfies

the following condition

.ndS=O,
where n is the outer normal vector to 9().

(A5) The domain 9($) and the function (x, g) vary periodically in
with period T>0, i.e., 9($-T)=9($), (., t+T)=(., t) for each

Since 9(t) is bounded, there exists an open ball B with radius d such that
2(g)cB. We put B--BI\K. We introduce a solenoidal periodic unction b
over B such that b (x, $)--(x, ) on 39() nd n ppropriate function on
f2(t) with the same boundary values on 2() as 0.

We now set the periodicity condition
( 2 ) u(., 0)=u(., T) in f2(O)--f2(T),
nd consider the periodic problem or (HC) with (1) nd (2).
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Then we have in [4] the following theorem’
Theorem A. In addition to assumptions (A1)-(A5), if the viscocity

is sufficiently large and the boundary data and To are sufficiently small in
some sense, then the periodic problem for (HC) has a unique strong solution
with period T.

Remark 1. The definition of strong solutions is to be given in 3.
Detailed conditions on ,, and To in the above theorem are contained in [4].

We have now the following stability theorem which is the main result
in this paper. (Symbols W(tg), l(t) and H(9) are used as usual.)

Theorem B. Let W(t)=t(w(t), (t)) be the periodic strong solution in
Theorem A and let U0 ’(u0, 80) e H(9(0)) ([2(0)). Then there exist
positive numbers , and , independent of TI such that if .,

sup VO(t)][ <., sup ]b(s)()ds
OtT (t)) OtT-1

sup b(s) ][()ds <., sup Jib(t) ]w()
OgtT-1 OtT

and llV0lw<<0>>)+l
then the followings hold"

( ) The initial value problem for (HC) with (1) and
(3) u(O)=w(O)+uo, 0(0)=+(0)+00 in 9(0)
hs a unique global strong solution.

(ii) Let denote the global strong solution obtained in (i) by V(t)=
(v(t), O(t)), then we hve. Strong solutions of the heat convection equation. We make a
suitable change of variables and use the same letters after changing
variables, then (HC) and (1) are transformed to the followings"

(u+(u.V)u=-Yp-(u.V)b-(b.V)u-RO+hu+f in ,
in ,div u 0(5)

(’o+(u.V)o=Lao-(u.V)O-(b.V)o+f in
P

( 6 ) u]0,(t) =0, O]o,(t) =0 or any t e (0, T),
wheref bt-- (b. V) b + hb + d"g/,-R(0-1/P), f (b. V) 0, R agTod/v,
P=v/x; ,, , a, p are physical constants and g=g(x) is the gravitational
vector.

Let us put U t(u, O) and we notice H(B) X L(B)= (H.(B) X O)+
(0 L(B)) (direct sum). Then we introduce a proper lower semicontinuous
convex (p.l.s.c.) function as ollows"

IVOl dx i U e HI(B)X W(B),
( 7 ) (U)=

if U e (H(B) X L(B)) (H(B) X W(B)).
Next we consider a closed convex set K(t) of H(B)L(B)
( 8 ) K(t)={U eH(B)xL(B); U=0 a.e. in B9(t)}
or any t e [0, T] and denote its indicator function by I(), namely,
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=0 if U e K(t) and I((U)= + c if U e (H(B) L(B))\K(t). Then we
define the following p.l.s.c, function
( 9 ) (U)--(U)+I()(U) or every t e [0, T].
Let 3t be the subdifferential operator of , then we see"

(i) D(3)----{U eH(B)L(B); UI()e(W(9(t))H(9(t)))
(w((t)) ((t))), ul\ =0}

(ii) 3*(U)--{f e H(B)L(B); P((t))fl(t)=n(9(t))Ul,(t)},
where A(9(t)) is the Stokes operator, P(9(t))= *(P(9(t)), 1(,)) and P(9(t))
is the orthogonal projection from L(9(t)) to H(9(t)). Using the operator
3*, we reduce (5) and (6) to the ollowing bstract heat convection equation

(AHC) in H(B) L(B).

(AHC) dV +3*(V(t))+F(t)V(t)+M(t)V(t) P(B)f(t), t e [0, T],
dt

where V--(v, ), F(t)V(t)--(P(B)(v.V)v, (v.V)t), M(t)V(t)--(P(B)((v.V)b
-4-(b.V)v-+-R0), (v.V)t +(b.V)t), f=t(fl,f2) and P(B)=t(P(B), 1B); f means
the natural extension o f.

Now we define the strong solution of (AHC) as ollows.
Definition 1. Let V" [0, S]--+H(B)X L(B), S e (0, T]. Then V is called

strong solution of (AHC) on [0, S] if it satisfies the ollowing properties
(i) and (ii).

( ) V e C([0, S] H(B) X L2(B)) and dV/dt e L2(O, S H(B) L(B)).
(ii) V(t) e D(3t) for a.e. e [0, S] and there is function G e L(0, S;

H(B) X L2(B)) satisfying G(t) e 3t (V(t)) and (dV/dr) + G(t)-4-F(t)V(t)-4-
M(t)V(t)=P(B)f(t) for a.e. t e [0, S].

Definition 2. A strong solution of (AHC) satisfying the ollowing
condition (10) (resp. (11)) is called a periodic strong solution (resp. strong
solution of the initial value problem)"
(10) V(0)-- V(T) in H(B) L(B),
(11) V(0) =t(,/) in H(B) L(B),
where a nd h re certain prescribed initial data in H(tg(0)) W(9(0)).

4. Proof of the theorem. We prove Theorem B. Let us put U=
*(u, t)=*(v-w, 0-)=V- W. Then the assertions (i) and (ii) of Theorem
B can be reduced to the global existence of the strong solution and the decay
problem of it for the next initial value problem in =0<,< 9(t) {t}"

u+ (u. V)u Vp (u. V)w (w. V)u (u. V)b (b. V)u R+hu
(12) divu=0

[0t +(u. V) 0 (1 P)AO-(u. V)--(w. V)0-(u. V))--(b. V)0
(13) uio,(t)=O, 010(t)=0 for any t e (0, c),
(14) ul=o=Uo, 01=o=0o in 9(0).
Here let put

(15) If sup 12ds,,T If(s)
O_t_T-1

Then we note the following estimate given in [4]"
(6) (w(t))<=o,
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where 0 is a constant depending on Ilfl.,,r. Moreover, it holds also that
r0-0 as I]f I,,r-+0. Employing (16), the claim (i) can be proven by using
the similar arguments to those in [4]. So we omit details.

To show (ii), multiplying both sides of (12) by U and integrating over
(t), we get by standard inequalities

(17) l__d V(01 +29t(V(0)
2 dt
C IVU(t) .(I VW(t) +llVb(t)

Considering (16), if b and are sufficiently small and is suffieiently large,
there exists/:> 0 such that 2- 0 and

(18) 1-- d---ll U(t)l/(2-)9(U(t))<O
2 dt

hold. Hence we have proven (ii). Q.E.D.
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