3. Remarks on the Stability of Certain Periodic Solutions of the Heat Convection Equations

By Kazuo Ōeda
General Education, Japan Women's University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1990)

§ 1. Introduction. Let $\Omega(t)$ be a time-dependent bounded space domain in R^{m} ($m=2$ or 3) whose boundary $\partial \Omega(t)$ consists of two components, namely, $\partial \Omega(t)=\Gamma_{0} \cup \Gamma(t)$. Here Γ_{0} is the inner boundary and $\Gamma(t)$ is the outer one. Moreover, these two boundaries do not intersect each other. We denote by K the compact set which is bounded by Γ_{0}. Let $u=u(x, t)$, $\theta=\theta(x, t)$ and $p=p(x, t)$ be the velocity of the viscous fluid, the temperature and the pressure, respectively. We consider the heat convection equation (HC) of Boussinesq approximation in $\hat{\Omega}=\underset{0<t<T}{ } \Omega(t) \times\{t\}$ with boundary conditions

$$
\begin{equation*}
\left.u\right|_{\partial \Omega(t)}=\beta(x, t),\left.\quad \theta\right|_{\Gamma_{0}}=T_{0}>0,\left.\quad \theta\right|_{\Gamma(t)}=0 \text { for any } t \in(0, T) \tag{1}
\end{equation*}
$$

In our previous paper [4], we have proven the unique existence of the time-periodic strong solution of (HC) with (1), provided the domain $\Omega(t)$ and the boundary data $\beta(x, t)$ both vary periodically with period T. The purpose of this paper is to show the asymptotic stability of the periodic solution which is obtained in [4].
§2. Assumptions and results. We make some assumptions:
(A1) For any fixed $t>0, \Gamma(t)$ and Γ_{0} are both simple closed curves (or surfaces) and also they are of class C^{3}.
(A2) $\quad \Gamma(t) \times\{t\}(0<t<T)$ changes smoothly (say, of class C^{4}) with respect to t. (See, Assumptions II and III in [4].)
(A3) $g(x)$ is a bounded and continuous vector function in $R^{m} \backslash$ int K.
(A4) $\beta(x, t)$ is sufficiently smooth in x and t. Moreover, it satisfies the following condition

$$
\int_{\partial \Omega(t)} \beta \cdot n d S=0
$$

where n is the outer normal vector to $\partial \Omega(t)$.
(A5) The domain $\Omega(t)$ and the function $\beta(x, t)$ vary periodically in t with period $T>0$, i.e., $\Omega(t+T)=\Omega(t), \beta(\cdot, t+T)=\beta(\cdot, t)$ for each $t>0$.

Since $\Omega(t)$ is bounded, there exists an open ball B_{1} with radius d such that $\overline{\Omega(t)} \subset B_{1}$. We put $B=B_{1} \backslash K$. We introduce a solenoidal periodic function b over B such that $b(x, t)=\beta(x, t)$ on $\partial \Omega(t)$ and an appropriate function $\bar{\theta}$ on $\Omega(t)$ with the same boundary values on $\partial \Omega(t)$ as θ.

We now set the periodicity condition

$$
\begin{equation*}
u(\cdot, 0)=u(\cdot, T) \quad \text { in } \Omega(0)=\Omega(T) \tag{2}
\end{equation*}
$$

and consider the periodic problem for (HC) with (1) and (2).

Then we have in [4] the following theorem:
Theorem A. In addition to assumptions (A1)-(A5), if the viscocity ν is sufficiently large and the boundary data β and T_{0} are sufficiently small in some sense, then the periodic problem for ($H C$) has a unique strong solution with period T.

Remark 1. The definition of strong solutions is to be given in §3. Detailed conditions on ν, β and T_{0} in the above theorem are contained in [4].

We have now the following stability theorem which is the main result in this paper. (Symbols $W_{2}^{p}(\Omega), \dot{W}_{2}^{p}(\Omega)$ and $H_{o}^{1}(\Omega)$ are used as usual.)

Theorem B. Let $W(t)=^{t}(w(t), \psi(t))$ be the periodic strong solution in Theorem A and let $U_{0}={ }^{t}\left(u_{0}, \theta_{0}\right) \in H_{o}^{1}(\Omega(0)) \times W_{2}^{1}(\Omega(0))$. Then there exist positive numbers ν_{*} and γ_{*} independent of $T \geqq 1$ such that if $\nu>\nu_{*}$,

$$
\begin{aligned}
& \sup _{0 \leq t \leq T}\|\nabla \bar{\theta}(t)\|_{L_{(\Omega(t))}^{2}}<\gamma_{*}, \quad \sup _{0 \leq t \leq T-1}\left(\int_{t}^{t+1}\|b(s)\|_{W_{2}^{2}(B)}^{2} d s\right)^{1 / 2}<\gamma_{*}, \\
& \sup _{0 \leq t \leq T-1}\left(\int_{t}^{t+1}\left\|b_{s}(s)\right\|_{L^{2}(B)}^{2} d s\right)^{1 / 2}<\gamma_{*}, \\
& \sup _{0 \leq t \leq T}\|b(t)\|_{W_{2}^{1}(B)}<\gamma_{*} \\
& \\
& \text { and }\left\|U_{0}\right\|_{\left\{W_{2}^{1}(\Omega(0))\right\} m+1}<\gamma_{*},
\end{aligned}
$$

then the followings hold:
(i) The initial value problem for $(H C)$ with (1) and

$$
\begin{equation*}
u(0)=w(0)+u_{0}, \quad \theta(0)=\psi(0)+\theta_{0} \quad \text { in } \Omega(0) \tag{3}
\end{equation*}
$$

has a unique global strong solution.
(ii) Let us denote the global strong solution obtained in (i) by $V(t)=$ ${ }^{t}(v(t), \Theta(t))$, then we have

$$
\begin{equation*}
\|V(t)-W(t)\|_{\left\{L^{2}(\Omega(t))\right\} m+1} \longrightarrow 0 \quad \text { as } t \rightarrow \infty \tag{4}
\end{equation*}
$$

§3. Strong solutions of the heat convection equation. We make a suitable change of variables and use the same letters after changing of variables, then (HC) and (1) are transformed to the followings:

$$
\left\{\begin{array}{rlrl}
u_{t}+(u \cdot \nabla) u & =-\nabla p-(u \cdot \nabla) b-(b \cdot \nabla) u-R \theta+\Delta u+f_{1} & & \text { in } \hat{\Omega}, \tag{5}\\
\operatorname{div} u=0 & & \text { in } \hat{\Omega}, \\
\theta_{t}+(u \cdot \nabla) \theta=\frac{1}{P} \Delta \theta-(u \cdot \nabla) \bar{\theta}-(b \cdot \nabla) \theta+f_{2} & & \text { in } \hat{\Omega},
\end{array}\right.
$$

$$
\begin{equation*}
\left.u\right|_{\partial \Omega(t)}=0,\left.\quad \theta\right|_{\partial \Omega(t)}=0 \quad \text { for any } t \in(0, T) \tag{6}
\end{equation*}
$$

where $f_{1}=-b_{t}-(b \cdot \nabla) b+\Delta b+d^{3} g / \nu^{2}-R(\bar{\theta}-1 / P), f_{2}=-(b \cdot \nabla) \bar{\theta}, R=\alpha g T_{0} d^{3} / \kappa \nu$, $P=\nu / \kappa ; \nu, \kappa, \alpha, \rho$ are physical constants and $g=g(x)$ is the gravitational vector.

Let us put $U={ }^{t}(u, \theta)$ and we notice $H_{\sigma}(B) \times L^{2}(B)=\left(H_{\sigma}(B) \times 0\right)+$ $\left(0 \times L^{2}(B)\right)$ (direct sum). Then we introduce a proper lower semicontinuous convex (p.l.s.c.) function as follows:

$$
\varphi_{B}(U)= \begin{cases}\frac{1}{2} \int_{B}\left(|\nabla u|^{2}+\frac{1}{P}|\nabla \theta|^{2}\right) d x \quad \text { if } U \in H_{o}^{1}(B) \times \dot{W}_{2}^{1}(B), \tag{7}\\ +\infty \quad \text { if } U \in\left(H_{\sigma}(B) \times L^{2}(B)\right) \backslash\left(H_{\sigma}^{1}(B) \times \dot{W}_{2}^{1}(B)\right) .\end{cases}
$$

Next we consider a closed convex set $K(t)$ of $H_{\sigma}(B) \times L^{2}(B)$:

$$
\begin{equation*}
K(t)=\left\{U \in H_{o}(B) \times L^{2}(B) ; U=0 \text { a.e. in } B \backslash \Omega(t)\right\} \tag{8}
\end{equation*}
$$

for any $t \in[0, T]$ and denote its indicator function by $I_{K(t)}$, namely, $I_{K(t)}(U)$
$=0$ if $U \in K(t)$ and $I_{K(t)}(U)=+\infty$ if $U \in\left(H_{\sigma}(B) \times L^{2}(B)\right) \backslash K(t)$. Then we define the following p.l.s.c. function
(9)

$$
\varphi^{t}(U)=\varphi_{B}(U)+I_{K(t)}(U) \quad \text { for every } t \in[0, T]
$$

Let $\partial \varphi^{t}$ be the subdifferential operator of φ^{t}, then we see:
(i)

$$
\begin{aligned}
D\left(\partial \varphi^{t}\right)= & \left\{U \in H_{\sigma}(B) \times L^{2}(B) ;\left.U\right|_{\Omega(t)} \in\left(W_{2}^{2}(\Omega(t)) \cap H_{\sigma}^{1}(\Omega(t))\right)\right. \\
& \left.\times\left(W_{2}^{2}(\Omega(t)) \cap W_{2}^{1}(\Omega(t))\right),\left.U\right|_{B \backslash \Omega(t)}=0\right\}
\end{aligned}
$$

(ii) $\quad \partial \varphi^{t}(U)=\left\{f \in H_{\sigma}(B) \times L^{2}(B) ;\left.P(\Omega(t)) f\right|_{\Omega(t)}=\left.A(\Omega(t)) U\right|_{\Omega(t)}\right\}$,
where $A(\Omega(t))$ is the Stokes operator, $P(\Omega(t))={ }^{t}\left(P_{\sigma}(\Omega(t)), 1_{\Omega(t)}\right)$ and $P_{o}(\Omega(t))$ is the orthogonal projection from $L^{2}(\Omega(t))$ to $H_{\sigma}(\Omega(t))$. Using the operator $\partial \varphi^{t}$, we reduce (5) and (6) to the following abstract heat convection equation (AHC) in $H_{\sigma}(B) \times L^{2}(B)$.
(AHC) $\quad \frac{d V}{d t}+\partial \varphi^{t}(V(t))+F(t) V(t)+M(t) V(t) \ni P(B) \tilde{f}(t), t \in[0, T]$,
where $V={ }^{t}(v, \theta), F(t) V(t)={ }^{t}\left(P_{\sigma}(B)(v \cdot \nabla) v,(v \cdot \nabla) \theta\right), M(t) V(t)={ }^{t}\left(P_{\sigma}(B)((v \cdot \nabla) b\right.$ $+(b \cdot \nabla) v+R \theta),(v \cdot \nabla) \tilde{\theta}+(b \cdot \nabla) \theta), \tilde{f}={ }^{t}\left(\tilde{f}_{1}, \tilde{f}_{2}\right)$ and $P(B)={ }^{t}\left(P_{\sigma}(B), 1_{B}\right) ; \tilde{f}_{i}$ means the natural extension of f_{i}.

Now we define the strong solution of (AHC) as follows.
Definition 1. Let $V:[0, S] \rightarrow H_{\sigma}(B) \times L^{2}(B), S \in(0, T]$. Then V is called a strong solution of (AHC) on $[0, S]$ if it satisfies the following properties (i) and (ii).
(i) $\quad V \in C\left([0, S] ; H_{\sigma}(B) \times L^{2}(B)\right)$ and $\mathrm{d} V / d t \in L^{2}\left(0, S ; H_{\sigma}(B) \times L^{2}(B)\right)$.
(ii) $V(t) \in D\left(\partial \varphi^{t}\right)$ for a.e. $t \in[0, S]$ and there is a function $G \in L^{2}(0, S$; $\left.H_{o}(B) \times L^{2}(B)\right)$ satisfying $\mathrm{G}(t) \in \partial \varphi^{t}(V(t))$ and $(d V / d t)+G(t)+F(t) V(t)+$ $M(t) V(t)=P(B) \tilde{f}(t)$ for a.e. $t \in[0, S]$.

Definition 2. A strong solution of (AHC) satisfying the following condition (10) (resp. (11)) is called a periodic strong solution (resp. a strong solution of the initial value problem) :

$$
\begin{array}{ll}
V(0)=V(T) & \text { in } H_{\sigma}(B) \times L^{2}(B) \\
V(0)=^{t}(\tilde{a}, \tilde{h}) & \text { in } H_{\sigma}(B) \times L^{2}(B) \tag{11}
\end{array}
$$

where a and h are certain prescribed initial data in $H_{\sigma}^{1}(\Omega(0)) \times W_{2}^{1}(\Omega(0))$.
§4. Proof of the theorem. We prove Theorem B. Let us put $U=$ ${ }^{t}(u, \theta)={ }^{t}(v-w, \Theta-\psi)=V-W$. Then the assertions (i) and (ii) of Theorem B can be reduced to the global existence of the strong solution and the decay problem of it for the next initial value problem in $\hat{\Omega}=\bigcup_{0<t<\infty} \Omega(t) \times\{t\}$:

Here let put

$$
\begin{equation*}
\|\tilde{f}\|_{2, \infty, T}^{2}=\sup _{0 \leqq t \leqq T-1} \int_{t}^{t+1}\|\tilde{f}(s)\|_{B}^{2} d s \tag{14}
\end{equation*}
$$

Then we note the following estimate given in [4]:

$$
\begin{equation*}
\varphi^{t}(W(t)) \leqq \gamma_{0} \tag{16}
\end{equation*}
$$

where γ_{0} is a constant depending on $\|\tilde{f}\|_{2, \infty, T}$. Moreover, it holds also that $\gamma_{0} \rightarrow 0$ as $\|\tilde{f}\|_{2, \infty, T} \rightarrow 0$. Employing (16), the claim (i) can be proven by using the similar arguments to those in [4]. So we omit details.

To show (ii), multiplying both sides of (12) by U and integrating over $\Omega(t)$, we get by standard inequalities

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|U(t)\|^{2}+2 \varphi^{t}(U(t)) \tag{17}\\
& \quad \leqq C\|\nabla U(t)\|^{2} \cdot(\|\nabla W(t)\|+\|\nabla b(t)\|+\|\nabla \bar{\theta}(t)\|+|R|)
\end{align*}
$$

Considering (16), if b and $\bar{\theta}$ are sufficiently small and ν is sufficiently large, there exists $\delta>0$ such that $2-\delta>0$ and

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|U(t)\|^{2}+(2-\delta) \varphi^{t}(U(t)) \leqq 0 \tag{18}
\end{equation*}
$$

hold. Hence we have proven (ii).
Q.E.D.

References

[1] Foias, C., Manley, O., and R. Temam: Attractors for the Bènard problem. Existence and physical bounds on their fractal dimension. Nonlinear Anal. T.M.A., 11, 939-967 (1987).
[2] Morimoto, H.: On the existence of weak solutions of equation of natural convection. J. Fac. Sci. Univ. Tokyo, Sect. IA, 36, 87-102 (1989).
[3] O$e d a, ~ K .: ~ O n ~ t h e ~ i n i t i a l ~ v a l u e ~ p r o b l e m ~ f o r ~ t h e ~ h e a t ~ c o n v e c t i o n ~ e q u a t i o n ~ o f ~ B o u s-~$ sinesq approximation in a time-dependent domain. Proc. Japan Acad., 64A, 143146 (1988).
[4] --: Weak and strong solutions of the heat convection equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo, Sect. IA, 36 (to appear).

