13. Spectral Analysis for the Casimir Operator on the Quantum Group $\mathrm{SU}_{q}(1,1)$

By Kimio Ueno
Department of Mathematics, Waseda University
(Communicated by Kôsaku Yosida, m. J. A., Feb. 13, 1990)

In this letter we will determine the spectrum of the Casimir operator for zonal spherical functions on the quantum $\operatorname{group} S U_{q}(1,1)$, and show the Plancheral formula and the expansion theorem for them.
§ 1. $\mathscr{U}_{q}(s u(1,1))(0<q<1)$ be the real form of the universal quantum enveloping algebra [3] with the $*$-structure, $k^{*}=k, e^{*}=-f, f^{*}=-e$ [1]. In [1] we have classified irreducible unitary representations of $\mathscr{U}_{q}(s u(1,1))$ as follows: We set a left $\bigcup_{q}(s u(1,1))$-module $V_{l}=\oplus_{i \in I_{l}} \boldsymbol{C} \xi_{i}$ by

$$
\begin{align*}
& k \cdot \xi_{j}=q^{-j} \xi_{j}, \tag{1.1}\\
& e \cdot \xi_{j}=q^{1 / 2-l} \frac{1-q^{2(l-j+1)}}{1-q^{2}} \xi_{j-1}, \\
& f \cdot \xi_{j}=q^{1 / 2-l} \frac{1-q^{2(l+j+1)}}{1-q^{2}} \xi_{j+1} .
\end{align*}
$$

Here the complex spin l and the indices set I_{l} are listed in the table below ($q=e^{-h}, h>0$).

l	I_{l}
$l=-1 / 2$	$I_{l}=\{1 / 2,3 / 2, \cdots\},\{-1 / 2,-3 / 2, \cdots\}$
$-1 / 2<l<0$	$I_{l}=Z$
$l \in 1 / 2 N$	$I_{l}=\{l+1, l+2, \cdots\},\{-l-1,-l-2, \cdots\}$
$l=-1 / 2+i \theta$	$(0 \leq \theta \leq \pi / 2 h) I_{l}=Z,(0<\theta \leq \pi / 2 h) I_{l}=Z+1 / 2$
$l=-1 / 2+i(\pi / 2 h+i t)(0<t)$	$I_{l}=Z, Z+1 / 2$

Let $w_{i j}^{(l)}$ be the matrix elements on $S U_{q}(1,1)$ corresponding to each representations. They are represented in terms of the basic hypergeometric functions

$$
{ }_{2} \varphi_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; q, z\right)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(b ; q)_{n}}{(q ; q)_{n}(c ; q)_{n}} z^{n},
$$

where $(a ; q)_{n}=\prod_{\substack{n=0 \\ r=0}}^{\left(1-\alpha q^{r}\right)}(1 \leq n \leq \infty)$. For example, in the case of $i+j$ $\leq 0, j \leq i$.
(1.3) $\quad w_{i j}^{(l)}=q^{(j-i)(l+j)} \frac{\left(q^{2(l-i+1)} ; q^{2}\right)_{i-j}}{\left(q^{2} ; q^{2}\right)_{i-j}} x^{-i-j} v^{i-j}{ }_{2} \varphi_{1}\left(\begin{array}{c}q^{2(l-j+1)}, q^{-2(l+j)} \\ q^{2(i-j+1)}\end{array} ; q^{2}, q^{2} \zeta\right)$,
where x, u, v and y are the coordinate elements on $S U_{q}(1,1)$ and $\zeta=-q^{-1} u v$. These matrix elements satisfy the eigen-equation

$$
\begin{equation*}
\pi_{l}(C) w_{i j}^{(l)}=[l+1 / 2]^{2} w_{i j}^{(l)} \tag{1.4}
\end{equation*}
$$

where π_{l} is the left invariant differential representation of $\bigcup_{q}(s l(2))$ on \mathcal{A} (the dual space of $U_{q}(s l(2))$), and

$$
\begin{equation*}
C=\frac{q k^{2}+q^{-1} k^{-2}-2}{\left(q-q^{-1}\right)^{2}}+f e \tag{1.5}
\end{equation*}
$$

is the Casimir element of $U_{q}(s l(2))$ [3], and $[a]=\left(q^{a}-q^{-a}\right) /\left(q-q^{-1}\right)$.
Equation (1.4) is, in fact, a q-difference equation of the second order. In particular, the zonal spherical function

$$
w_{00}^{(l)}={ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{2 l+2}, q^{-2 l} \tag{1.6}\\
q^{2}
\end{array} q^{2}, q^{2} \zeta\right)
$$

satisfies a q-analogue of the Legendre equation

$$
\begin{equation*}
q D_{q^{2}}\left\{z(z+1) D_{q^{2}} T_{q^{2}}^{-1} \varphi(z)\right\}+[1 / 2]^{2} \varphi(z)=[l+1 / 2]^{2} \varphi(z) \tag{1.7}
\end{equation*}
$$

where $z=-\zeta$, and

$$
D_{q^{2}} \varphi(z)=\frac{\varphi(z)-\varphi\left(q^{2} z\right)}{\left(1-q^{2}\right) z}, \quad T_{q^{2}} \varphi(z)=\varphi\left(q^{2} z\right)
$$

§2. We will consider the spectral theory for the difference equation which arises from the equation (1.7).

For a solution $\varphi(z)$ to (1.7), we set $\varphi(n)=\varphi\left(q^{2 n}\right)$. Then we see that $\varphi=$ $(\varphi(n))_{n \in Z}$ solves the following difference equation
(2.1) $\quad\left(q+q^{1-2 n}\right) \varphi(n-1)-2\left(q^{2}+q^{1-2 n}\right) \varphi(n)+\left(q^{3}+q^{1-2 n}\right) \varphi(n+1)=\lambda \varphi(n)$, where n runs over Z, and

$$
\begin{equation*}
\lambda=\left(1-q^{2}\right)^{2}[l+1 / 2]^{2} . \tag{2.2}
\end{equation*}
$$

Taking into account the Haar measure on $S U_{q}(1,1)$ (cf. [2]), we introduce a Hilbert space

$$
l_{00}^{2}=\left\{\varphi=(\varphi(n))_{n \in \boldsymbol{Z}}\|\varphi\|_{00}<+\infty\right\}
$$

with an inner product

$$
\begin{equation*}
(\varphi, \psi)=\left(1-q^{2}\right) \sum_{n=-\infty}^{+\infty} \varphi(n) \overline{\psi(n)} q^{2 n} \tag{2.3}
\end{equation*}
$$

It is easy to see that the equation (2.1) is formally self-adjoint in l_{00}^{2}. Moreover we impose on (2.1) the following boundary condition ;

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\{\varphi(n)-\varphi(n-1)\}=0 \tag{2.4}
\end{equation*}
$$

Theorem 1. Equation (2.1) with the boundary condition (2.4) constitutes a self-adjoint boundary value problem in l_{00}^{2}.

Theorem 2. The Green kernel $G(n, m ; \lambda)$ for the above boundary value problem is given as follows:

$$
\begin{equation*}
\boldsymbol{G}(n, m ; \lambda)=\varphi_{+\infty}(n ; \lambda) \cdot \varphi_{-\infty}(m ; \lambda) \quad(m \leq n) \tag{2.5}
\end{equation*}
$$

where, setting $l=-1 / 2+i \theta$,

$$
\varphi_{+\infty}(n ; \lambda)={ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{1+2 i \theta}, \tag{2.6}\\
q^{2}
\end{array} q^{1-2 i \theta} ; q^{2},-q^{2 n+2}\right)
$$

and $\varphi_{-\infty}(n ; \lambda)=\gamma(\theta) \phi\left(q^{2 n} ; \theta\right)$ with

$$
\begin{equation*}
\phi(z ; \theta)=\left(-q^{1-2 t \theta} ; q^{2}\right)_{\infty}\left(q^{4-4 i \theta} ; q^{4}\right)_{\infty}\left(q^{2} z\right)^{-1 / 2+i \theta} \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& \times{ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{1-2 i \theta}, q^{1-2 i \theta} \\
q^{2-4 i \theta}
\end{array} ; q^{2},-z^{-1}\right) \\
& \gamma(\theta)=\frac{-2\left(q^{4} ; q^{4}\right)_{\infty} q^{-2 i \theta}}{\left(1-q^{2}\right)\left(q^{2} ; q^{4}\right)_{\infty}\left(-q^{1+2 i \theta} ; q^{2}\right)_{\infty}\left(q^{1-2 i \theta} ; q^{2}\right)_{\infty}\left(-q^{1-2 i \theta} ; q^{2}\right)_{\infty}} . \tag{2.8}
\end{align*}
$$

Investigating the singularities of the Green function (cf. [4]), we can determine the spectrum and the spectral measure of this boundary value problem, and finally establish the eigen-function expansion theorem.

Theorem 3. Let $\varphi(\theta)=\left(\varphi_{+\infty}(n ; \lambda)\right)_{n \in Z}$ and $\theta_{k}=\pi / 2 h+(2 k+1) i / 2$. Then, for any $f \in l_{00}^{2}$, we have

$$
\begin{equation*}
\|f\|_{00}^{2}=\int_{0}^{2 \pi / h} d \theta c(\theta)\left|(f, \varphi(\theta))_{00}\right|^{2}+\sum_{k=0}^{\infty} c_{k}\left|\left(f, \varphi\left(\theta_{k}\right)\right)_{00}\right|^{2} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
f=\int_{0}^{\pi / 2 h} d \theta c(\theta) \varphi(\theta) \cdot(f, \varphi(\theta))_{00}+\sum_{k=0}^{+\infty} c_{k} \varphi\left(\theta_{k}\right)\left(f, \varphi\left(\theta_{k}\right)\right)_{00}, \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
& c(\theta)=\frac{4 q^{2}\left(q^{4} ; q^{4}\right)_{\infty}^{2}\left(q^{4 i \theta} ; q^{4}\right)_{\infty}\left(q^{-4 i \theta} ; q^{4}\right)_{\infty}}{\pi\left(1-q^{2}\right)\left(q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{2+4 i \theta} ; q^{4}\right)_{\infty}\left(q^{2-4 i \theta} ; q^{4}\right)_{\infty}} \tag{2.11}\\
& c_{k}=[2 k+1]
\end{align*}
$$

The formula (2.9) is viewed as the Plancheral formula for zonal spherical functions on the quantum group $S U_{q}(1,1)$, and, in the classical case, (2.10) is known as the Fok-Mehler formula.

Extending the theory developed here to the whole of functions on $S U_{q}$ $(1,1)$, one can determine the spectrum of the Casimir operator and establish the Plancheral formula in the L^{2}-space on $S U_{q}(1,1)$ [5]. In particular, one sees that the principal series of unitary representations are parametrized as follows:
(2.13) $l=-1 / 2+i \theta(0 \leq \theta \leq \pi / 2 h)$, the principal continuous series;
$l \in \frac{1}{2} N$, the first discrete series;
$l=-1 / 2+i \theta_{k}(k \in N)$, the second discrete series.
After this work was completed, the author learned the paper [6] of L .
L. Vaksman and L. I. Korodskii. They also obtained the formula (2.9).

References

[1] T. Masuda et al.: Unitary representations of the quantum group $S U_{q}(1,1)$. I, II (to appear in Lett. in Math. Phys.).
[2] T. Masuda and J. Watanabe: Sur les espace vectoriels topologiques associes aux groupes quantiques $S U_{q}(2)$ et $S U_{q}(1,1)$ (1989) (preprint).
[3] M. Jimbo: A q-difference analogue of $U(g)$ and the Yang Baxter equation. Lett. in Math. Phys., 10, 63-69 (1985).
[4] K. Kodaira: On singular solutions of second order differential operators. I, II. Sūgaku, 7, 177-191; 2, 113-139 (1948) (in Japanese).
[5] K. Ueno: Plancheral formula for the quantum group $S U_{q}(1,1)$ (in preparation).
[6] L. L. Vaksman and L. I. Korodskii: Spherical functions on the quantum group $S U_{q}(1,1)$ and q-analogue of Fok-Mehler's formula (to appear in Funkts. Anal. Prilozhen) (in Russian).

