10. A Remark on Exponentially Bounded C-semigroups

By Isao Miyadera and Naoki Tanaka
Department of Mathematics, Waseda University
(Communicated by Kôsaku Yosida, m. J. A., Feb. 13, 1990)

1. Introduction. Let X be a Banach space with norm $\|\cdot\|$. We denote by $B(X)$ the set of all bounded linear operators from X into itself.

Let C be an injective operator in $B(X)$. A family $\{S(t) ; t \geqq 0\}$ in $B(X)$ is called an exponentially bounded C-semigroup (hereafter abbreviated to C-semigroup) on X, if
(1.1) $S(s+t) C=S(s) S(t)$ for $s, t \geqq 0$ and $S(0)=C$,
(1.2) $S(\cdot):[0, \infty) \rightarrow X$ is continuous for $x \in X$,
(1.3) there are $M \geqq 0$ and $a \geqq 0$ such that $\|S(t)\| \leqq M e^{a t}$ for $t \geqq 0$.

The generator A of a C-semigroup $\{S(t) ; t \geqq 0\}$ on X is defined by

$$
\left\{\begin{array}{l}
D(A)=\left\{x \in X ; \lim _{t \rightarrow 0+}(S(t) x-C x) / t \in R(C)\right\} \tag{1.4}\\
A x=C^{-1} \lim _{t \rightarrow 0+}(S(t) x-C x) / t \text { for } x \in D(A),
\end{array}\right.
$$

where $R(C)$ denotes the range of C. It is known ([6, Proposition 1.1]) that (1.5) $\quad A$ is a closed linear operator in X and $A=C^{-1} A C$.

The purpose of this note is to prove
Theorem 1. The following statements are equivalent.
(I) A is the generator of a C-semigroup on X.
(II) $\left(a_{1}\right) A$ is a closed linear operator in X satisfying $C^{-1} A C=A$.
$\left(a_{2}\right)$ There exists a Banach space Σ with norm $N(\cdot)$ such that $R(C) \subset \Sigma \subset X$, $\|x\| \leqq M_{1} N(x)$ for $x \in \Sigma, N(x) \leqq M_{2}\left\|C^{-1} x\right\|$ for $x \in R(C)$ and the part of A in Σ is the generator of a semigroup of class $\left(C_{0}\right)$ on Σ, where $M_{i}, i=1,2$, are nonnegative constants.

Corollary 2. Let A be a closed linear operator in $X, c \in \rho(A)$ (the resolvent set of A) and let $n \geqq 0$ be an integer. Then the following statements are equivalent.
($\left.\mathrm{I}^{\prime}\right) \quad A$ is the generator of an n-times integrated semigroup on X.
(II^{\prime}) A is the generator of a C-semigroup on X with $C=R(c ; A)^{n}$, where $R(c ; A)=(c-A)^{-1}$.
(III') There exists a Banach space Σ with norm $N(\cdot)$ such that $D\left(A^{n}\right)$ $\subset \Sigma \subset X, \quad\|x\| \leqq M_{1} N(x)$ for $x \in \Sigma, N(x) \leqq M_{2} \sum_{k=0}^{n}\left\|A^{k} x\right\|$ for $x \in D\left(A^{n}\right)$ and the part of A in Σ is the generator of a semigroup of class $\left(C_{0}\right)$ on Σ, where $M_{i}, i=1,2$, are nonnegative constants.

This corollary improves upon [4, Corollary 5.3].
2. Proofs. Let $\{S(t) ; t \geqq 0\}$ be a C-semigroup on X satisfying (1.3) and let $b>a$. We define a linear subset Σ of X and a norm $N(\cdot)$ on Σ by (2.1) $\quad \Sigma=\left\{x \in X ; C^{-1} S(t) x\right.$ is continuous in $t \geqq 0$ and $\left.\lim _{t \rightarrow \infty} e^{-b t}\left\|C^{-1} S(t) x\right\|=0\right\}$, (2.2) $N(x)=\sup _{t \geq 0} e^{-b t}\left\|C^{-1} S(t) x\right\|$ for $x \in \Sigma$,
respectively. It is easy to see the following (2.3)-(2.6):
(2.3) $R(S(t)) \subset \Sigma$ for $t \geqq 0$, in particular $R(C) \subset \Sigma$;
(2.4) Σ becomes a Banach space under the norm $N(\cdot)$;
(2.5) $\|x\| \leqq N(x)$ for $x \in \Sigma$ and $N(x) \leqq M\left\|C^{-1} x\right\|$ for $x \in R(C)$;
(2.6) $\quad \Sigma$ is invariant under $C^{-1} S(t)$ for $t \geqq 0$, and

$$
C^{-1} S(s) C^{-1} S(t) x=C^{-1} S(s+t) x \quad \text { for } x \in \Sigma \quad \text { and } \quad s, t \geqq 0 .
$$

For each $t \geqq 0$ we define a linear operator $T(t): \Sigma \rightarrow \Sigma$ by

$$
T(t) x=C^{-1} S(t) x \quad \text { for } x \in \Sigma .
$$

Let A be the generator of $\{S(t) ; t \geqq 0\}$ and let A_{Σ} be the part of A in Σ. Then we have

Proposition 3. $\{T(t) ; t \geqq 0\}$ is a semigroup of class $\left(C_{0}\right)$ on the Banach space Σ satisfying $N(T(t) x) \leqq e^{b t} N(x)$ for $x \in \Sigma$ and $t \geqq 0$, and A_{Σ} is the generator of the semigroup $\{T(t) ; t \geqq 0\}$.

Proof. Clearly, $T(0)=\left.I\right|_{\Sigma}$ (the identity on Σ), $T(s+t)=T(s) T(t)$ for $s, t \geqq 0$ and $N(T(t) x)=\sup _{s \geqq 0} e^{-b s}\left\|C^{-1} S(s+t) x\right\| \leqq e^{b t} N(x)$ for $x \in \Sigma$ and $t \geqq 0$.
Let $x \in \Sigma$. Since $e^{-b t} C^{-1} S(t) x$ is uniformly continuous in $t \geqq 0$, we obtain that $N(T(h) x-x)=\sup _{t \geq 0} e^{-b t}\left\|C^{-1} S(t+h) x-C^{-1} S(t) x\right\| \leqq \sup _{t \geq 0} \| e^{-b(t+h)} C^{-1} S(t+h) x$ $-e^{-b t} C^{-1} S(t) x \|+\left(e^{b h}-1\right) N(x) \rightarrow 0$ as $h \rightarrow 0+$. Therefore $\{T(t) ; t \geqq 0\}$ is a semigroup of class (C_{0}) on Σ.

Let \mathfrak{H} be the generator of the semigroup $\{T(t) ; t \geqq 0\}$. If $x \in D(\mathfrak{H})$, then $\|\left(C^{-1} S(t) x-x\right) / t-9 x x \leqq N((T(t) x-x) / t-2(x) \rightarrow 0$ as $t \rightarrow 0+$, which implies that $x \in D(A) \cap \Sigma$ and $A x=\mathfrak{A} x \in \Sigma$, i.e., $x \in D\left(A_{\Sigma}\right)$ and $A_{\Sigma} x=\mathfrak{A} x$. Therefore $\mathfrak{H} \subset A_{\Sigma}$. To show $D\left(A_{\Sigma}\right) \subset D(\mathfrak{H})$, let $x \in D(A)$ and $A x \in \Sigma$. Since $S(t) z-C z=$ $A \int_{0}^{t} S(s) z d s$ and $A S(t) y=S(t) A y$ for $t \geqq 0, z \in X$ and $y \in D(A)$ (see [6, Proposition 1.2] or [1, Lemmas 2.7 and 2.8]), we see that $S(t) x-C x=\int_{0}^{t} S(s) A x d s$ $=C \int_{0}^{t} C^{-1} S(s) A x d s$ and then $T(t) x-x=\int_{0}^{t} T(s) A x d s$ for $t \geqq 0$. Since $T(\cdot) A x$: $[0, \infty) \rightarrow \Sigma$ is continuous, we obtain $N((T(t) x-x) / t-A x) \rightarrow 0$ as $t \rightarrow 0+$ which means $x \in D(\mathfrak{H})$. Therefore $D\left(A_{\Sigma}\right) \equiv\{x \in D(A) \cap \Sigma ; A x \in \Sigma\} \subset\{x \in D(A) ; A x$ $\in \Sigma\} \subset D(\mathfrak{H})$.
Q.E.D.

Remark 4. 1) The argument above shows that $D\left(A_{\Sigma}\right)=\{x \in D(A)$; $A x \in \Sigma\}$.
2) $T(t) C x=C^{-1} S(t) C x=S(t) x$ for $x \in X$ and $t \geqq 0$, because of $R(C) \subset \Sigma$.

Proof of Theorem 1. By (1.5), (2.3), (2.5) and Proposition 3, (I) implies (II). To show that (II) implies (I), let A_{Σ} be the part of A in Σ and let $\{T(t)$; $t \geqq 0\}$ be the semigroup of class (C_{0}) on Σ generated by A_{Σ}.

For each $t \geqq 0$ we define a linear operator $S(t): X \rightarrow X$ by

$$
S(t) x=T(t) C x \quad \text { for } x \in X
$$

Then we have
$\|S(t) x\| \leqq M_{1} N(T(t) C x) \leqq M_{1} K e^{\omega t} N(C x) \leqq K M_{1} M_{2} e^{\omega t}\|x\|$ for $x \in X$ and $t \geqq 0$, where K and ω are nonnegative constants such that $N(T(t) z) \leqq K e^{\omega t} N(z)$ for $z \in \Sigma$ and $t \geqq 0$. Clearly, $S(\cdot):[0, \infty) \rightarrow X$ is continuous for $x \in X$. Since A_{Σ} is the generator of the semigroup $\{T(t) ; t \geqq 0\}$ of class (C_{0}), it is known
that $\left(\lambda-A_{\Sigma}\right)^{-1} z=\int_{0}^{\infty} e^{-\lambda t} T(t) z d t$ for $z \in \Sigma$ and $\lambda>\omega$. (For example, see [3, chapter XI].) Since $R(C) \subset \Sigma$ and $\left.C\right|_{\Sigma} \in B(\Sigma)$, we obtain
(2.7) $\quad\left(\lambda-A_{\Sigma}\right)^{-1} C x=\int_{0}^{\infty} e^{-\lambda t} T(t) C x d t$ for $x \in X$ and $\lambda>\omega$,
(2.8) $C\left(\lambda-A_{\Sigma}\right)^{-1} z=\int_{0}^{\infty} e^{-\lambda t} C T(t) z d t$ for $z \in \Sigma$ and $\lambda>\omega$.

Moreover we have
(2.9) $C\left(\lambda-A_{\Sigma}\right)^{-1} z=\left(\lambda-A_{\Sigma}\right)^{-1} C z$ for $z \in \Sigma$ and $\lambda>\omega$.

In fact, let $z \in \Sigma$ and $\lambda>\omega$. From $A=C^{-1} A C$ and $R(C) \subset \Sigma$ it follows that $C\left(\lambda-A_{\Sigma}\right)^{-1} z \in D(A) \cap \Sigma$ and $A C\left(\lambda-A_{\Sigma}\right)^{-1} z=C A\left(\lambda-A_{\Sigma}\right)^{-1} z=C A_{\Sigma}\left(\lambda-A_{\Sigma}\right)^{-1} z=$ $\lambda C\left(\lambda-A_{\Sigma}\right)^{-1} z-C z \in \Sigma$. Therefore $C\left(\lambda-A_{\Sigma}\right)^{-1} z \in D\left(A_{\Sigma}\right)$ and $A_{\Sigma} C\left(\lambda-A_{\Sigma}\right)^{-1} z=$ $\lambda C\left(\lambda-A_{\Sigma}\right)^{-1} z-C z$, which implies (2.9). It follows from (2.7)-(2.9) that $\int_{0}^{\infty} e^{-\lambda t}(T(t) C z-C T(t) z) d t=0$ for $z \in \Sigma$ and $\lambda>\omega$. By the uniqueness theorem for Laplace transforms we get

$$
T(t) C z=C T(t) z \quad \text { for } z \in \Sigma \text { and } t \geqq 0
$$

This implies that $S(s) S(t) x=T(s) C T(t) C x=T(s+t) C^{2} x=S(s+t) C x$ for $x \in X$ and $s, t \geqq 0$. Therefore $\{S(t) ; t \geqq 0\}$ is a C-semigroup on X.

Let B be the generator of the C-semigroup $\{S(t) ; t \geqq 0\}$ on X. It is known that $C^{-1} B C=B$ and $(\lambda-B)^{-1} C x=\int_{0}^{\infty} e^{-\lambda t} S(t) x d t$ for $x \in X$ and $\lambda>\omega$. (See [6, Propositions 1.1 and 1.2] or [1, Lemma 2.9].) It follows from (2.7) that
(2.10) $\quad\left(\lambda-A_{\Sigma}\right)^{-1} C x=(\lambda-B)^{-1} C x$ for $x \in X$ and $\lambda>\omega$.

Hence $(\lambda-B)^{-1} C(\lambda-A) x=\left(\lambda-A_{\Sigma}\right)^{-1} C(\lambda-A) x=\left(\lambda-A_{\Sigma}\right)^{-1}\left(\lambda-A_{\Sigma}\right) C x=C x$ for $x \in D(A)$ and $\lambda>\omega$, which implies $A x=C^{-1} B C x=B x$ for $x \in D(A)$, i.e., $A \subset B$. (We have used here that $A=C^{-1} A C$ and $C(D(A)) \subset D\left(A_{\Sigma}\right)$). By (2.10) again, $\left(\lambda-A_{\Sigma}\right)^{-1} C(\lambda-B) x=(\lambda-B)^{-1} C(\lambda-B) x=C x$ for $x \in D(B)$, which implies $B x=$ $C^{-1} A C x=A x$ for $x \in D(B)$, i.e., $B \subset A$. Thus A is the generator of the C semigroup $\{S(t) ; t \geqq 0\}$.
Q.E.D.

Proof of Corollary 2. By [2, Theorem 2.4], (I') is equivalent to (II'). To show that (II^{\prime}) is equivalent to (III^{\prime}), we use Theorem 1 with $C=R(c ; A)^{n}$. By $A R(c ; A) x=R(c ; A) A x$ for $x \in D(A)$, we see that $A \subset C^{-1} A C$. Next if $x \in D\left(C^{-1} A C\right)$, then $C x=R(c ; A) C\left(c x-C^{-1} A C x\right)=C R(c, A)\left(c x-C^{-1} A C x\right)$ and hence $x=R(c ; A)\left(c x-C^{-1} A C x\right) \in D(A)$. Therefore we obtain $A=C^{-1} A C$. Moreover, $x \rightarrow\left\|(c-A)^{n} x\right\|\left(=\left\|C^{-1} x\right\|\right)$ defines a norm on $D\left(A^{n}\right)$ which is equivalent to the graph norm $\sum_{k=0}^{n}\left\|A^{k} x\right\|$ on $D\left(A^{n}\right)$. The result follows from Theorem 1.
Q.E.D.
3. Application. We start with
(a_{1}) Representation of C-semigroups. Let $\{S(t) ; t \geqq 0\}$ be a C-semigroup on X. If A is the generator of $\{S(t) ; t \geqq 0\}$ then

$$
\begin{equation*}
S(t) x=\lim _{n \rightarrow \infty}(1-t A / n)^{-n} C x=\lim _{\lambda \rightarrow \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{t^{n} \lambda^{2 n}(\lambda-A)^{-n}}{n!} C x \tag{3.1}
\end{equation*}
$$

for $x \in X$ and the limit is uniform in t on every bounded interval. In particular, if $R(C)$ is dense in X then we have [5, Theorems 1.2 and 1.3].

In fact, Let $\Sigma, N(\cdot), T(t)$ and A_{Σ} be as in Proposition 3. By the theory of semigroups of class $\left(C_{0}\right), T(t)$ can be represented as follows (see [3] or [8]) : For every $z \in \Sigma, T(t) z=N(\cdot)-\lim _{n \rightarrow \infty}\left(1-t A_{\Sigma} / n\right)^{-n} z=N(\cdot)-\lim _{\lambda \rightarrow \infty} e^{-\lambda t} \sum_{n=0}^{\infty}$ $\left(t^{n} \lambda^{2 n}\left(\lambda-A_{\Sigma}\right)^{-n} / n!\right) z\left(=N(\cdot)-\lim _{\lambda \rightarrow \infty} \exp \left(t \lambda A_{\Sigma}\left(\lambda-A_{\Sigma}\right)^{-1}\right) z\right)$ uniformly in $t \geqq 0$ on every bounded interval, where $N(\cdot)$-lim means the limit with respect to $N(\cdot)$-norm. Noting $T(t) C x=S(t) x$ for $x \in X$ and $t \geqq 0$ (see Remark 4), we obtain (3.1). If $R(C)$ is dense in X, then $(\lambda-\bar{G})^{-n} C x=(\lambda-A)^{-n} C x$ for $x \in X$, $\lambda>a$ and $n \geqq 0$, where \bar{G} is the c.i.g. of $\{S(t) ; t \geqq 0\}$. Therefore [5, Theorems 1.2 and 1.3] follows from (3.1).
(a_{2}) The abstract Cauchy problem. Let A be the generator of a C semigroup $\{S(t) ; t \geqq 0\}$ on X satisfying (1.3). Then for every $x \in D\left(A_{\Sigma}\right)$, $u(t, x)=C^{-1} S(t) x$ is a unique solution to the abstract Caucy problem $(\operatorname{ACP} ; A, x) \quad(d / d t) u(t, x)=A u(t, x) \quad$ for $t \geqq 0 \quad$ and $\quad u(0, x)=x$.

In fact, let $T(t)$ and A_{Σ} be as in Proposition 3. The conclusion follows from the fact that $T(t) x$ is a unique solution to (ACP ; $\left.A_{\Sigma}, x\right)$ for $x \in D\left(A_{\Sigma}\right)$ by the theory of semigroups of class $\left(C_{0}\right)$.

Since $(\lambda-A)^{-1} C(X) \subset D\left(A_{\Sigma}\right)$ for $\lambda>a$, the result above improves upon [7, Corollary 1.3]. (We note here that $C(D(A)) \subset(\lambda-A)^{-1} C(X)$ and that $C(D(A))$ $=(\lambda-A)^{-1} C(X)$ if and only if $\lambda \in \rho(A)$.)
(a_{3}) Generation of C-semigroups. Applying Theorem 1 we can prove the following generation theorem of a C-semigroup (see [6, Theorem 2.1]): Let A be a densely defined closed linear operator in X such that $\lambda-A$ is injective, $D\left((\lambda-A)^{-m}\right) \supset R(C),\left\|(\lambda-A)^{-m} C\right\| \leqq M /(\lambda-a)^{m}(\lambda>a, m \geqq 1)$ and $C^{-1} A C$ $=A$. Then A is the generator of a C-semigroup on X.

References

[1] R. deLaubenfels: C-semigroups and the Cauchy problem. J. Funct. Anal. (to appear).
[2] -: Integrated semigroups, C-semigroups and the abstract Cauchy problem. Semigroup Forum (to appear).
[3] E. Hille and R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math. Soc. Colloq. Publ., 31 (1957).
[4] F. Neubrander: Integrated semigroups and their applications to the abstract Cauchy problem. Pacific J. Math., 135, 111-155 (1988).
[5] N. Tanaka: On the exponentially bounded C-semigroups. Tokyo J. Math., 10, 107-117 (1987).
[6] N. Tanaka and I. Miyadera: Exponentially bounded C-semigroups and integrated semigroups. ibid., 12, 99-115 (1989).
[7] ——: C-semigroups and the abstract Cauchy problem (preprint).
[8] K. Yosida: Functional Analysis. Springer-Verlag (1978).

