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On the Divisor Function and Class Numbers
of Real Quadratic Fields. II
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Abstract: The purpose of this paper is to continue work begun in
[12] by providing lower bounds for the class numbers of real quadratic fields

Q(,/d) in terms of the divisor function. These results generalize those of
Halter-Koch in [5] as well as Azuhata [1]-[2], Mollin [7]-[11], and Yokoi [17]-
[23].

1. Notation and preliminaries. Throughout d is a positive square-

free integer, and K--Q(/d), and h(d) is the class number of K. The
maximal order in K is denoted (C), and the discriminant of K is zl--4d/a

{ if d--_--I (mod4) } Let w=(a-l+/d)/a.where a= if d=2, 3 (mod 4)
If [a, ] is the module {ax+/y" x, y e Z} then we observe that the maxi-

mal order 0=[1, w]. It can be shown (for example see Ince [6, pp. v-vii])
that I is an ideal in (C) if and only if I=[a, b+cw] where a, b, c e Z (the
rational integers) with c]b, c la and aclN(b+cw) where N is the norm
from K to Q. Moreover if a0 then a is unique and is the smallest posi-
tive rational integer in I, denoted a--L(I). Thus N(I)=cL(I). If c=1 we
say that I is a primitive ideal, and so N(I)=L(I). Since I=(c)[a/c, b/c+
w] then we may restrict our attention to primitive ideals, (where (c) de-
notes the principal ideal generated by (c)).

A primitive ideal I is called reduced if it does not contain any non-
zero element such that both I]N(I) and llN(I) where is the alge-
braic conjugate of a.

Proof of the following facts can be ound in [14]-[16].
Theorem 1.1. (a) If I is a reduced ideal then N(I)/ .
(b) If I is a primitive ideal and N(I)/ zl /2 then I is reduced.
Let I-- [N(I), b +w] lee primitive then the expansion of (b +w) IN(I)

as a continued raction (a0, a, a, ..., a} of period length k and the se-
quences of integers P, Q, i_0 are obtained recursively as ollows"

(Po, Qo)=(ab+a-1, aN(I)), P+I=aQ-P
where a=[(P+/d)/Q] with being the greatest integer function,
and d=P++QQ+I.

Let I= [N(I), b +w] primitive and reduced. Then the expansion of
(b+w)/N(I) into a continued fraction yields all of the reduced ideals in

equivalent to I; i.e. I=[Qo/a, (Po+/d)/a]=II=[Q/a, (P+/d)/a]
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I=[Q_,/a, (P_,+/ d )/a] and I/,=I (whereN denotes equivalence
in the class group of (). Thus the (P,-t-/-)/Q, are complete quotients
in the continued fraction of (b+w)/N(I). From [16] we get"

Theorem 1.2. Let I--[N(J), bj-t-w] be a reduced ideal in _).
(a) If J is reduced and I-J, then N(J)=Q,/Qo for some i with O_i

<_k.
(b) If J and I are the only ideals of the norm N(J), where J is re-

duced and N(J)-Q,/a for some i with 1ik, then either JNI or ]I.
Let r denote the divisor function where r(x) is the number of distinct

positive divisors of an integer x. ) will denote the Kronecker symbol.
If A0 is a real number and P-{p, ..., p} is a set of distinct primes

then c_y(A)={s= [.=p?. e>_O and s<_A}. Let (d) denote the set of all
norms of primitive., principal ideals in (C). Finally set R(d)={Q,/Qo" i-
1,..., k in the continued fraction expansion of w}.

2. Class numbers and the divisor function. The results in this sec-
tion generalize those in [5]-[6].

Theorem 2.1. Let A>O be a real number and c_y={pl, "’’, Pn} C 8e of
primes such that (d/p,)= 1 for all p, e c_y and (A) (d)=l. Then h(d)>_
r(q) for all q e c_p(A).

Proof. Let q e P(A) with q= [[__lp?. Let 5P, be over p, in (. Set
]] ._-1{ where 0_f e.
Claim 1o If1 then f--0 for all i, whereNdenotes equivalence in

the class group Cr of K.
If el then since all primes p split in K then is primitive and

principal. Thus, N() e LP(A) (d)=l, a contradiction, unless f-0 for
all i.

Claim 2. If 1 4= [|._-IP{’ [-I._-IP?=/=I for 0<_f ge then f=g for
all i.

Consider |-[__ P{,-",I. If some f-g< 0 then (since we did not
specify above) we may replace 5P by KP, the conjugate of , without loss
of generality. Therefore we have 1-l__P{,-,l with f-g>_O for all i.
By Claim 1 we are done. Hence we have r(q) inequivalent ideals.

Example 2.1. Let d=145, ={2, 3}, and A=3. Then LP(A)={1, 2, 3}
and by Theorems 1.1-1.2, c_Y(A)_(d)_R(d)={1, 3}. tte.nce (A) Q(d)=l.
By Theorem 2.1, h(d)r(2)=r(3’)=2. Halter-Koch’s result [5] yields only
h(d)_>l. In fact h(d)=4.

Remark 2.1. In general if d=4/+l, P={primes p with p</} and
A=largest prime in LP then (A)fll Q(d)=l because P(A) .(d)_R(d) by
Theorems 1.1-1.2, and R(d)= {1, 1}. Thus h(d)>__r(A) if there exists a prime
p e P with (d/p)=1; i.e. h(d)=l implies that d is not a quadratic residue
modulo d. This was proved in [6] and [4] for example by entirely differ-
ent techniques.

In particular if is even then d_l (mod 8) and h(d)-I if and only if
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d--17. In [3] Callialp used analytic techniques to prove that for even
h(d) 1 or only finitely ma.ny d 41 + 1.

Our result is much more precise in that there is exactly one; viz. d--
17 and h(d)--1. Moreover our techniques are much more straightforward
and simpler. This was also ound by other techniques in [7].

lxample 2.2. I P={p} and f is maximal with respect to p_A then
clearly f [log A/log p] whence, h(d) _r(p) f+1 (log A/log p).

The following generalizes Halter-Koch’s [5, Satz 3, p. 92] or Ex-
tended-Richaud Degert (ERD)-types, i.e., those of the orm d=l+r with
410 (mod r).

Theorem 2.2. Let d--l-t-r be of ERD-type, A=/ zl /2 and --{primes
P" Pll with (r/p)--i, rl (mod p)}. Then h(d)_r(q) for all q e (A).

Proof. All we need to show is that P(A) (d)-- 1. Since (A) (d)
_R(d) by Theorems 1.1-1.2 then we need merely do an exhaustive check
of each continued raction table or the various ERD-types. Such a cal-
culation was done in [11] and the result follows.

Ixample 2.:. Letd=/+2, A--/ d ={pl l" (2/p)=l} then h(d)r(q)
for all q e P(A). For example if d=p+2 where p-- +_1 (mod 8) then h(d)
_r(p)=2.

Ixample 2.4. Let d=9/-2, A=/d, ll with ={3} then h(d)___r(3)
--2. We also ound this result by different methods in [8, Corollary 1.4,
p. 11].

We conclude with results related to [5, Lemma 1, p. 88] which is found
also in [9, Lemma 1.1, p. 40].

In [10] we proved the ollowing which we easily see is related to Theo-
rem. 2.1. Herein we set the undamental unit o K to be (t +u/d ) a

and set B ((2t a) N() 1) u.
Theorem 2.:. If h(d)=l then p is inert in K for all primes pB.
Remark 2.2. Let n(B) denote the nearest integer to B. In [13] we

ound with one possible exception) all h(d)-I when n(B)=/=O. This com-
pleted the task of Yokoi begun [17]-[20] where he dealt with the special
case where d is a prime congruent to 1 module 4.

We conclude with a result related to Theorems 2.1 and 2.3. First we
define an element e ( to be primitive if () is not divisible by any rational
ideal except (1), and (a)=/=(1). A version o this was proved in. [6].

Proposition 2.1. Let A O be any real number. Then the following
are equivalent"

(1) lx-dy]=am for lmA implies that m=t with gcd (x, y)=t.
(2) N(a)]_A for all primitive e (.

Proof. (1)-+(2)" Let a=(x+y/ d )/a e ) be primitive. Thus IN(x+
y/d )] am. If 1 mA then m t with gcd (x, y) t, whence t 1.
Thus a is a unit, contradicting primitivity.

(2)-(1)" Let Ix-dy[=am or lmA. Let gcd (x, y)-- t, then
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I(x/t)-d(y/t)l=am/t. Thus a=(x/t)+/d (y/t) is primitive if m:/:V so
m/VA, a contradiction. Hence, m=V.

Corollary 2.1. If (1) ails AB.
Proof. By [9, Lemma 1.1, p. 40] i (1) ails then m_B. However,

B_mA.
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