70. An Example of an Exceptional (-2n-1, n)-curve in an Algebraic 3-fold

By Tetsuya Ando
Department of Mathematics, College of Arts and Sciences,
Chiba University
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 9, 1990)

§ 1. Introduction. Let X be a non-singular algebraic variety of dimension three over the complex numker field C. A non-singular curve $C \subset X$ is called exceptional if there exists a variety Y and a morphism $f: X \rightarrow Y$ such that $f(C)$ is a point and that $X-C \cong Y-f(C)$. A non-singular rational curve $C \subset X$ is called an (a, b)-curve, if the normal bundle of C can ke presented as $N_{C / X}=\mathcal{O}_{c}(a) \oplus \mathcal{O}_{c}(b)$ with $a \leqq b$. Let C ke an exceptional (a, b)-curve. What value can the pair (a, b) take? By Ando[1] and Nakayama[3], the following facts are proved.
(1) (a, b) must satisfy an inequality $a+2 b \leqq-1$ and $(a, b) \neq(-1,0)$.
(2) For every pair (a, b) with $a+2 b \leqq-2$, there exist some examples of exceptional (a, b)-curves.

Then we have a question: For (a, b) with $a+2 b=-1$ and $(a, b) \neq$ $(-1,0)$, does there exist an example of an exceptional (a, b)-curve?

For $(a, b)=(-3,1)$, some examples are constructed and properties of ($-3,1$)-curves are studies in Laufer[2], Pinkham[4], Reid[5] and Ando[1]. But for $b \geqq 2$, no examples are known yet. In this paper, we shall show that for every pair (a, b) with $a+2 b=-1$ and $(a, b) \neq(-1,0)$, there exists an example of an exceptional (a, b)-curve.
§2. Construction. Put $(a, b)=(-2 n-1, n)$ with $n>0$. We shall construct a ($-2 n-1, n$)-curve C in an algebraic 3 -fold X. (Compare with Laufer[2].)

Let U and V ke C^{3} with coordinates $\left(x, y_{1}, y_{2}\right)$ and (w, z_{1}, z_{2}). We construct X by patching U and V by the following transition functions:

$$
\left\{\begin{array}{l}
z_{1}=x^{2 n+1} y_{1}+y_{2}^{2}+x^{n} y_{2}^{3} \\
z_{2}=x^{-n} y_{2} \\
w=x^{-1}
\end{array}\right.
$$

It is clear that the curve $C \subset X$ defined by $y_{1}=y_{2}=0$ in U and $z_{1}=z_{2}=0$ in V is a rational curve with $I_{C} / I_{C}^{2} \cong \mathcal{O}_{c}(2 n+1) \oplus \mathcal{O}_{c}(-n)$ where I_{C} is a defining ideal of C in \mathcal{O}_{x}. We shall show that this $(-2 n-1, n)$-curve C is exceptional. The first step is to find five holomorphic functions h_{1}, \cdots, h_{5} on X. Let $h_{1}=z_{1}=x^{2 n+1} y_{1}+y_{2}^{2}+x^{n} y_{2}^{3}$ and $h_{2}=w^{2 n} z_{1}-z_{2}^{2}=x y_{1}+y_{2}^{3}$. h_{1} and h_{2} are holomorphic functions on X. Since $u=h_{2}^{2}-h_{1}^{3}=x\left(2 y_{1} y_{2}^{3}+y_{1}^{2}\right)+x^{2 n} u_{0}\left(x, y_{1}, y_{2}\right)$ can be divided by $x, h_{3}=z_{2} u^{n}$ and $h_{4}=w u$ are also holomorphic functions on X. For $r \geqq 0$, let

$$
f_{0, r}= \begin{cases}w^{n} z_{1}^{r / 2} & \text { if } r \text { is even } \\ z_{2} z_{1}^{(r-1) / 2} & \text { if } r \text { is odd. }\end{cases}
$$

Inductively, for $q \geqq 1$, let $f_{q, r}=f_{0, r} h_{2}^{q}-\sum_{i=0}^{q-1}\binom{q}{i} f_{i, 3 q-3 i+r}$.
Lemma. $\sum_{i=a}^{b}(-1)^{i-a}\binom{b}{i}\binom{i}{a}=0$.
Proof. Let $r=b-a$. Then

$$
\begin{aligned}
\sum_{i=a}^{b}(-1)^{i-a}\binom{b}{i}\binom{i}{a} & =\frac{b!}{a!} \sum_{i=a}^{b} \frac{(-1)^{i-a}}{(b-i)!(i-a)!} \\
& =\frac{b!}{a!} \sum_{j=0}^{r} \frac{(-1)^{j}}{(r-j)!j!} \\
& =\frac{b!}{a!r!} \sum_{j=0}^{r}(-1)^{j}\binom{r}{j}=0
\end{aligned}
$$

Let $t_{i}^{(q, r)}= \begin{cases}w^{n} z_{1}^{(3 q+r-3 i) / 2} h_{2}^{i} & \text { if } q+r+i \text { is even } \\ z_{2} z_{1}^{(3 q+r-3 i-1) / 2} h_{2}^{i} & \text { if } q+r+i \text { is odd. }\end{cases}$
Claim. $f_{q, r}=\sum_{i=0}^{q}(-1)^{q-i}\binom{q}{i} t_{i}^{(q, r)}$.
Proof. Note that $t_{i}^{(k, 3 q-3 k+r)}=t_{i}^{(q, r)}$. Let $t_{i}=t_{i}^{(q, r)}$. We shall show that $f_{k, 3 q-3 k+r}=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} t_{i}$. Note that when we put $k=q$, we have the claim. If $k=0$, the above equality trivially holds. If $k>0$, we shall prove this by the induction on k. Since $f_{0,3 q-3 k+r} h_{2}^{k}=t_{k}^{(q, r)}$,

$$
\begin{aligned}
f_{k, 3 q-3 k+r} & =f_{0,3 q-3 k+r} h_{2}^{k}-\sum_{i=0}^{k-1}\binom{k}{i} f_{i, 3 k-3 t+\gamma} \\
& =t_{k}-\sum_{i=0}^{k-1}\binom{k}{i} \sum_{j=0}^{i}(-1)^{i-j}\binom{i}{j} t_{j} \\
& =t_{k}-\sum_{j=0}^{k-1} \sum_{i=j}^{k-1}(-1)^{i-j}\binom{k}{i}\binom{i}{j} t_{j} \\
& =t_{k}+\sum_{j=0}^{k-1}(-1)^{k-j}\binom{k}{j} t_{j} \\
& =\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} t_{j} .
\end{aligned}
$$

Thus we complete the proof.
Trivially, $f_{q, r}$ is a polynomial with respect to w, z_{1}, z_{2}. On the other hand by construction, $f_{q, r}\left(x, y_{1}, y_{2}\right)=x^{q-n} y_{1}^{q} y_{2}^{r}+x^{n} g\left(x, y_{1}, y_{2}\right)$, where g is a suitable polynomial. Especially, $f_{n, 0}$ is also a polynomial with respect to x, y_{1}, y_{2}. Thus, $h_{5}=f_{n, 0}$ is a holomorphic function on X.

Now we have a holomorphic mapping $h=\left(h_{1}, \cdots, h_{5}\right): X \rightarrow C^{5}$. Let $X \xrightarrow{f} Y \xrightarrow{g} C^{5}$ be the Stein factorization of h. Since $C=h^{-1}(0), f(C)$ is a point. We shall show that $X-C \cong Y-f(C)$. Since g is a finite map, and since every fiber of f is connected, it is enough to show that h is finite except the origin 0 .

Let $v=\left(v_{1}, \cdots, v_{5}\right) \in h(V)-\{0\}$. If $v_{2}^{2}-v_{1}^{3} \neq 0$, then $z_{1}=v_{1}, z_{2}=v_{3} /\left(v_{2}^{2}-v_{1}^{3}\right)^{n}$ and $w=v_{4} /\left(v_{2}^{2}-v_{1}^{3}\right)$. Thus $h^{-1}(v)$ is just a point.

Assume $v_{2}^{2}-v_{1}^{3}=0$. If $v_{2}=0$, then we can derive $v_{1}=v_{2}=v_{3}=v_{4}=v_{5}=0$.

Thus $v_{2} \neq 0$. Since $h_{5}=f_{n, 0}=v_{5}$, we have $\alpha w^{n}-\beta z_{2}=v_{5}$, where

$$
\alpha= \begin{cases}\sum_{j=0}^{n / 2}\binom{n}{2 j} v_{1}^{(3 n-6 \beta) / 2} v_{2}^{2 j} & \text { if } n \text { is even } \\ \sum_{j=0}^{(n-1 / 2 / 2}\binom{n}{2 j+1} v_{1}^{(3 n-6 j-3) / 2} v_{2}^{2 j+1} & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\beta= \begin{cases}\sum_{j=0}^{(n / 2)-1}\binom{n}{2 j+1} v_{1}^{(3 n-6 j-4) / 2} v_{2}^{2 j+1} & \text { if } n \text { is even } \\ \sum_{j=0}^{(n-1) / 2}\binom{n}{2 j} v_{1}^{(3 n-6 j-1) / 2} v_{2}^{2 j} & \text { if } n \text { is odd }\end{cases}
$$

Since $v_{2}^{2}=v_{1}^{3}$ and since $v_{2} \neq 0$, we have $(\alpha, \beta) \neq(0,0)$. Thus the equation on w and z_{2}

$$
\left\{\begin{array}{l}
\alpha w^{n}-\beta z_{2}=v_{5} \\
v_{1} w^{2 n}-z_{2}^{2}=v_{2}
\end{array}\right.
$$

have at most $2 n$ common solutions. Thus $\left.h\right|_{V-C}$ is finite.
Let $v=\left(v_{1}, \cdots, v_{5}\right) \in h(U-V)-\{0\}$. Then $w=0$. Thus $v_{1}=y_{2}^{2}, v_{2}=y_{2}^{3}$, $v_{3}=2^{n} y_{1}^{n} y_{2}^{3 n+1}, v_{4}=2 y_{1} y_{2}^{3}$, and $v_{5}=y_{1}^{n}$. Therefore $\left.h\right|_{U-V-c}$ is finite.

Thus we have $\left.h\right|_{x-C}$ is finite. Therefore C is exceptional.

References

[1] T. Ando: On the normal bundle of P^{1} in a higher dimensional projective variety (to appear Amer. J. Math.).
[2] H. Laufer: On CP ${ }^{1}$ as an exceptional set. Recent Developments in Several Complex Variables. Ann. of Math. Stud., Princeton University Press, 100, 261-275 (1981).
[3] N. Nakayama: On smooth exceptional curves in threefolds. J. Fac. Sci. Univ. Tokyo, Sect. IA, 37, 511-525 (1990).
[4] H. Pinkham: Factorization of birational maps in dimension 3. Proc. of A. M. S. Summer Inst. on Singularities, Arcata, 1981. Proc. Symposia in Pure Math., A. M. S., 40, part 2, 343-371 (1983).
[5] M. Reid: Minimal models of canonical 3-folds. Advanced Studies in Pure Math., Algebraic Varieties and Analytic Varieties, Kinokuniya, 1, 131-180 (1983).

