67. A Remark on Quaternion Extensions of the Rational p-adic Field

By Genjiro FUJISAKI Department of Mathematics, College of Arts and Sciences, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1990)

0. Let F be a field. An extension field K of F is called a (Galois) quaternion extension of F if K/F is a Galois extension with the Galois group Gal(K/F) isomorphic to the quaternion group of order 8.

If F is the rational p-adic field Q_p , then there exists a Galois quaternion extension of $F = Q_p$ if and only if $p \equiv 3 \mod 4$ or p = 2.

In this note, we shall exhibit all quaternion extensions of Q_p ($p \equiv 3$ mod 4 or p=2) in a fixed algebraic closure of Q_{p} .

First, we recall some results in [3].

Lemma ([3]). Let F be a field of characteristic $\neq 2$ and let $a_i \in F - F^2$ (i=1, 2, 3) with $a_1a_2a_3 = a^2$ for some $a \in F - F^2$. Let $M = F(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3})$ be a biquadratic bicyclic extension of F. Let $\alpha \in M - M^2$. Then $K = M(\sqrt{\alpha})$ is a quaternion extension of F if and only if

$$(*) \qquad \qquad \begin{cases} \alpha \alpha^{\sigma} = \alpha_1^2 a_2 \quad with \ some \quad \alpha_1 \in F(\sqrt{a_1}) \\ \alpha \alpha^{\tau} = \alpha_2^2 a_3 \quad with \ some \quad \alpha_2 \in F(\sqrt{a_2}) \\ \alpha \alpha^{\sigma\tau} = \alpha_3^2 a_1 \quad with \ some \quad \alpha_3 \in F(\sqrt{a_3}) \end{cases}$$

where $\sigma, \tau \in Gal(M/F)$ are defined by

$$\sqrt{a_1}^{\sigma} = \sqrt{a_1}, \qquad \sqrt{a_2}^{\sigma} = -\sqrt{a_2}, \qquad \sqrt{a_3}^{\sigma} = -\sqrt{a_3}, \sqrt{a_1}^{\tau} = -\sqrt{a_1}, \qquad \sqrt{a_2}^{\tau} = \sqrt{a_2}, \qquad \sqrt{a_3}^{\tau} = -\sqrt{a_3}.$$

Proof. Suppose $K = M(\sqrt{\alpha})/F$ is a quaternion extension. Then, $M(\sqrt{\alpha}) = M(\sqrt{\alpha})$, whence $\alpha \alpha^{\sigma} = \gamma^2$ with some $\gamma \in M$. Since $\alpha \alpha^{\sigma} = N_{M/F(\sqrt{\alpha})}(\alpha)$ $\in F(\sqrt{a_1})$, γ has a form α_1 or $\alpha_1\sqrt{a_2}$ with some $\alpha_1 \in F(\sqrt{a_1})$. If $\gamma = \alpha_1 \in F(\sqrt{a_1})$. $F(\sqrt{a_1})$, then $K = M(\sqrt{\alpha})/F(\sqrt{a_1})$ is an abelian extension of type (2.2). But, since $K/F(\sqrt{a_1})$ is a cyclic extension, γ must have a form $\alpha_1\sqrt{a_2}$, i.e., Similarly, we have $\alpha \alpha^{\tau} = \alpha_2^2 a_3 \quad (\alpha_2 \in F(\sqrt{a_2})), \quad \alpha \alpha^{\sigma \tau} = \alpha_3^2 a_1 \quad (\alpha_3 \in F(\sqrt{a_2}))$ $\alpha \alpha^{\sigma} = \alpha_1^2 a_2$. $F(\sqrt{a_3})).$

Conversely, if the relations (*) hold, then $K = M(\sqrt{\alpha})/F$ is a Galois extension of degree 8 and the subextensions $K/F(\sqrt{a_i})$ (i=1, 2, 3) are all cyclic of degree 4. Since, as is well known, a finite group of order 8 which contains three cyclic subgroups of order 4, is the quaternion group, K= $M(\sqrt{\alpha})/F$ is a quaternion extension.

Proposition ([3]). Let F be a field of characteristic $\neq 2$ and let M/Fbe a biquadratic bicyclic extension. Suppose that $K = F(\sqrt{\alpha})$ (for some $\alpha \in$ M) is a quaternion extension of F which contains M.

Then, $F(\sqrt{r\alpha})$ with any $r \in F^{\times}$ is a quaternion extension of F contain-

No. 8]

ing M. Conversely, any quaternion extension of F containing M is of the form $F(\sqrt{r\alpha})$ with some $r \in F^{\times}$.

Furthermore, $F(\sqrt{r_1\alpha}) = F(\sqrt{r_2\alpha})$, r_1 , $r_2 \in F^{\times}$, if and only if $r_1/r_2 \in M^2$. *Proof.* If $K = F(\sqrt{\alpha}) (=M(\sqrt{\alpha}))$ is a quaternion extension of F, then, by lemma, $F(\sqrt{r\alpha}) = M(\sqrt{r\alpha})$ is a quaternion extension of F containing M.

Conversely, let K' be any quaternion extension of F containing M. Then, $K'=M(\sqrt{\beta})$ with some $\beta \in M$ and, as is seen from the relations (*), $M(\sqrt{\beta/\alpha})$ is a Galois extension of F and three extensions $M(\sqrt{\beta/\alpha})/F(\sqrt{a_i})$ (i=1,2,3) are all bicyclic. Since a finite group of order 8 which contains three abelian subgroups of type (2, 2), is an abelian group of type (2, 2, 2), $M(\sqrt{\beta/\alpha})/F$ is an abelian extension of type (2, 2, 2). Hence, $M(\sqrt{\beta/\alpha})$ has the form $M(\sqrt{r})$ with some $r \in F^{\times}$, whence $M(\sqrt{\beta})=M(\sqrt{r\alpha})$.

Therefore, $K' = M(\sqrt{\beta}) = M(\sqrt{r\alpha}) = F(\sqrt{r\alpha})$.

Finally, as $F(\sqrt{r\alpha}) = M(\sqrt{r\alpha})$ $(r \in F^{\times})$, $F(\sqrt{r_1\alpha}) = F(\sqrt{r_2\alpha})$ $(r_1, r_2 \in F^{\times})$ if and only if $r_1/r_2 \in M^2$.

Now, we state the theorem of Witt [4].

Theorem (Witt). Let F be a field of characteristic $\neq 2$ and let $M = F(\sqrt{a}, \sqrt{b})$ ($a, b \in F^{\times}$) be a biquadratic bicyclic extension of F. Then, M is embeddable into a Galois quaternion extension K of F if and only if the quadratic form $ax^2 + by^2 + abz^2$ is equivalent over F to $x^2 + y^2 + z^2$.

When this is the case, if

$${}^{\iota}P\begin{pmatrix}a&&\\&b&\\&&ab\end{pmatrix}P=\begin{pmatrix}1&&\\&1&\\&&1\end{pmatrix}$$

with a matrix $P = (p_{ij})$ $(p_{ij} \in F)$, det $P = (ab)^{-1}$, then a field $K = F(\sqrt{r(1 + p_{11}\sqrt{a} + p_{22}\sqrt{b} + p_{33}\sqrt{ab}}))$

(with any $r \in F^{\times}$) is a quaternion extension of F containing M.

For an elementary proof of this theorem, see the paper [2].

Corollary. If a quadratic extension $F(\sqrt{m})$ of F is embeddable into a quaternion extension of F, then m is a sum of three squares in F.

1. Let $p\equiv 3 \pmod{4}$ be a prime number. p is expressed as a sum of 3 non-zero squares in Z_p (=the ring of *p*-adic integers): $p=a^2+b^2+c^2$, $a, b, c \in Z_p$, $abc \neq 0$. (For example, $19=1^2+3^2+3^2$, $23=2^2+4^2+(\sqrt{3})^2$, $\sqrt{3} \in Z_{23}$.)

We put m=p, $n=a^2+b^2$, $\alpha=\sqrt{mn}(\sqrt{m}+\sqrt{n})(\sqrt{n}+a)$ (in an algebraic closure of Q_p). Then $K=Q_p(\sqrt{\alpha})$ is a quaternion extension of Q_p which contains the biquadratic field $M=Q_p(\sqrt{p}, \sqrt{-1}, \sqrt{-p})$. (cf. [1]).

The field M is the unique biquadratic bicyclic extension of Q_p which contains all quadratic extensions of Q_p .

Consequently, we see that, for any $r \in \mathbf{Q}_p^{\times}$, $\sqrt{r} \in \mathbf{Q}_p(\sqrt{r}) \subseteq M$ whence $r \in M^2$ and, in particular, \sqrt{m} , $\sqrt{n} \in M \Rightarrow \alpha \in M$.

Therefore, by the proposition in 0, $K = Q_p(\sqrt{\alpha})$ with α given above is the unique quaternion extension of Q_p (in a fixed algebraic closure of Q_p).

2. For p=2, there exist exactly seven quadratic extensions of Q_2 : $Q_2(\sqrt{-1}), \quad Q_2(\sqrt{\pm 2}), \quad Q_2(\sqrt{\pm 5}), \quad Q_2(\sqrt{\pm 10}).$

Since -1 cannot be expressed as a sum of 3 squares in Q_2 , $Q_2(\sqrt{-1})$ is not embeddable into any quaternion extension of Q_2 . All biquadratic bicyclic extensions of Q_2 which do not contain $Q_2(\sqrt{-1})$ are $Q_2(\sqrt{2}, \sqrt{5})$, $Q_2(\sqrt{2}, \sqrt{-5})$, $Q_2(\sqrt{5}, \sqrt{-2})$, $Q_2(\sqrt{10}, \sqrt{-2})$. Among these fields, by Witt's theorem, exactly three fields $M_1 = Q_2(\sqrt{2}, \sqrt{-5})$, $M_2 = Q_2(\sqrt{5}, \sqrt{-2})$, $M_3 =$ $Q_2(\sqrt{10}, \sqrt{-2})$ are embeddable into quaternion extensions of Q_2 . (cf. [2]). In fact, the following six fields

 $Q_2(\sqrt{\pm\sqrt{110}(\sqrt{11}+\sqrt{10})}(\sqrt{10}+1)) \supseteq M_3 = Q_2(\sqrt{10}, \sqrt{-2}) = Q_2(\sqrt{10}, \sqrt{11})$ are the quaternion extensions of Q_2 . (cf. Th. in [1]).

If we denote by M any one of three fields M_1 , M_2 and M_3 , we see that $\sqrt{-1} \notin M$ and, for any $r \in \mathbf{Q}_2^{\times}$, either $\sqrt{r} \in M$ or $\sqrt{-r} \in M$.

Therefore, by the proposition in 0, the six fields given above are exactly all quaternion extensions of Q_2 (in a fixed algebraic closure of Q_2).

References

- G. Fujisaki: An elementary construction of Galois quaternion extension. Proc. Japan Acad., 66A, 80-83 (1990).
- [2] C. Jensen and N. Yui: Quaternion Extensions. Algebraic Geometry and Commutative Algebra. vol. 1, Kinokuniya, pp. 155-182 (1988).
- [3] H. Reichardt: Über Normalköper mit Quaternionengruppe. Math. Zeitschrift, 41, 218-221 (1936).
- [4] E. Witt: Konstruktion von galoisschen Köpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p^{f} . J. Reine Angew. Math., 174, 237–245 (1936).

No. 8]