67. A Remark on Quaternion Extensions of the Rational p-adic Field

By Genjiro Fujisaki
Department of Mathematics, College of Arts and Sciences, University of Tokyo

(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1990)
0. Let F be a field. An extension field K of F is called a (Galois) quaternion extension of F if K / F is a Galois extension with the Galois group $G a l(K / F)$ isomorphic to the quaternion group of order 8.

If F is the rational p-adic field \boldsymbol{Q}_{p}, then there exists a Galois quaternion extension of $F=\boldsymbol{Q}_{p}$ if and only if $p \equiv 3 \bmod 4$ or $p=2$.

In this note, we shall exhibit all quaternion extensions of \boldsymbol{Q}_{p} ($p \equiv 3$ $\bmod 4$ or $p=2$) in a fixed algebraic closure of \boldsymbol{Q}_{p}.

First, we recall some results in [3].
Lemma ([3]). Let F be a field of characteristic $\neq 2$ and let $a_{i} \in F-F^{2}$ ($i=1,2,3$) with $a_{1} a_{2} a_{3}=a^{2}$ for some $a \in F-F^{2}$. Let $M=F\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}\right)$ be a biquadratic bicyclic extension of F. Let $\alpha \in M-M^{2}$. Then $K=M(\sqrt{\alpha})$ is a quaternion extension of F if and only if
(*)

$$
\left\{\begin{array}{cll}
\alpha \alpha^{\sigma}=\alpha_{1}^{2} a_{2} & \text { with some } & \alpha_{1} \in F\left(\sqrt{a_{1}}\right) \\
\alpha \alpha^{\tau}=\alpha_{2}^{2} a_{3} & \text { with some } & \alpha_{2} \in F\left(\sqrt{a_{2}}\right) \\
\alpha \alpha^{\sigma \tau}=\alpha_{3}^{2} a_{1} & \text { with some } & \alpha_{3} \in F\left(\sqrt{\overline{a_{3}}}\right)
\end{array}\right.
$$

where $\sigma, \tau \in \operatorname{Gal}(M / F)$ are defined by

$$
\begin{array}{lll}
\sqrt{a_{1}}{ }^{\sigma}=\sqrt{a_{1}}, & \sqrt{a_{2}}{ }^{\sigma}=-\sqrt{a_{2}}, & \sqrt{a_{3}}{ }^{\sigma}=-\sqrt{a_{3}}, \\
\sqrt{a_{1}{ }^{\tau}}=-\sqrt{a_{1}}, & \sqrt{a_{2}}{ }^{\tau}=\sqrt{a_{2}}, & \sqrt{a_{3}{ }^{\tau}}=-\sqrt{a_{3}} .
\end{array}
$$

Proof. Suppose $K=M(\sqrt{\alpha}) / F$ is a quaternion extension. Then, $M(\sqrt{\alpha})=M\left(\sqrt{\alpha^{\sigma}}\right)$, whence $\alpha \alpha^{\sigma}=\gamma^{2}$ with some $\gamma \in M$. Since $\alpha \alpha^{\sigma}=N_{M / F\left(\sqrt{a_{1}}\right)}(\alpha)$ $\in F\left(\sqrt{a_{1}}\right)$, γ has a form α_{1} or $\alpha_{1} \sqrt{a_{2}}$ with some $\alpha_{1} \in F\left(\sqrt{a_{1}}\right)$. If $\gamma=\alpha_{1} \in$ $F\left(\sqrt{a_{1}}\right)$, then $K=M(\sqrt{\alpha}) / F\left(\sqrt{a_{1}}\right)$ is an abelian extension of type (2.2). But, since $K / F\left(\sqrt{a_{1}}\right)$ is a cyclic extension, γ must have a form $\alpha_{1} \sqrt{a_{2}}$, i.e., $\alpha \alpha^{\sigma}=\alpha_{1}^{2} a_{2}$. Similarly, we have $\alpha \alpha^{\tau}=\alpha_{2}^{2} a_{3} \quad\left(\alpha_{2} \in F\left(\sqrt{a_{2}}\right)\right), \quad \alpha \alpha^{\sigma \tau}=\alpha_{3}^{2} a_{1} \quad\left(\alpha_{3} \in\right.$ $F\left(\sqrt{a_{3}}\right)$.

Conversely, if the relations (*) hold, then $K=M(\sqrt{\alpha}) / F$ is a Galois extension of degree 8 and the subextensions $K / F\left(\sqrt{a_{i}}\right)(i=1,2,3)$ are all cyclic of degree 4. Since, as is well known, a finite group of order 8 which contains three cyclic subgroups of order 4, is the quaternion group, $K=$ $M(\sqrt{\alpha}) / F$ is a quaternion extension.

Proposition ([3]). Let F be a field of characteristic $\neq 2$ and let M / F be a biquadratic bicyclic extension. Suppose that $K=F(\sqrt{\alpha})$ (for some $\alpha \in$ M) is a quaternion extension of F which contains M.

Then, $F(\sqrt{r \alpha})$ with any $r \in F^{\times}$is a quaternion extension of F contain-
ing M. Conversely, any quaternion extension of F containing M is of the form $F(\sqrt{r \alpha})$ with some $r \in F^{\times}$.

Furthermore, $F\left(\sqrt{r_{1} \alpha}\right)=F\left(\sqrt{r_{2} \alpha}\right), r_{1}, r_{2} \in F^{\times}$, if and only if $r_{1} / r_{2} \in M^{2}$.
Proof. If $K=F(\sqrt{\alpha})(=M(\sqrt{\alpha}))$ is a quaternion extension of F, then, by lemma, $F(\sqrt{r \alpha})=M(\sqrt{r \alpha})$ is a quaternion extension of F containing M.

Conversely, let K^{\prime} be any quaternion extension of F containing M. Then, $K^{\prime}=M(\sqrt{\beta})$ with some $\beta \in M$ and, as is seen from the relations $(*)$, $M(\sqrt{\beta / \alpha})$ is a Galois extension of F and three extensions $M(\sqrt{\beta / \alpha}) / F\left(\sqrt{a_{i}}\right)$ ($i=1,2,3$) are all bicyclic. Since a finite group of order 8 which contains three akelian subgroups of type (2,2), is an abelian group of type ($2,2,2$), $M(\sqrt{\beta / \alpha}) / F$ is an abelian extension of type $(2,2,2)$. Hence, $M(\sqrt{\beta / \alpha})$ has the form $M(\sqrt{r})$ with some $r \in F^{\times}$, whence $M(\sqrt{\beta})=M(\sqrt{r \alpha})$.

Therefore, $K^{\prime}=M(\sqrt{\beta})=M(\sqrt{r \alpha})=F(\sqrt{r \alpha})$.
Finally, as $F(\sqrt{r \alpha})=M(\sqrt{r \alpha})\left(r \in F^{\times}\right), F\left(\sqrt{r_{1} \alpha}\right)=F\left(\sqrt{r_{2} \alpha}\right)\left(r_{1}, r_{2} \in F^{\times}\right)$ if and only if $r_{1} / r_{2} \in M^{2}$.

Now, we state the theorem of Witt [4].
Theorem (Witt). Let F be a field of characteristic $\neq 2$ and let $M=$ $F(\sqrt{a}, \sqrt{b})\left(a, b \in F^{\times}\right)$be a biquadratic bicyclic extension of F. Then, M is embeddable into a Galois quaternion extension K of F if and only if the quadratic form $a x^{2}+b y^{2}+a b z^{2}$ is equivalent over F to $x^{2}+y^{2}+z^{2}$.

When this is the case, if

$$
{ }^{t} P\left(\begin{array}{lll}
a & & \\
& b & \\
& & a b
\end{array}\right) P=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

with a matrix $P=\left(p_{i j}\right)\left(p_{i j} \in F\right), \operatorname{det} P=(a b)^{-1}$, then a field

$$
K=F\left(\sqrt{r\left(1+p_{11} \sqrt{a}+p_{22} \sqrt{b}+p_{33} \sqrt{a b}\right)}\right)
$$

(with any $r \in F^{\times}$) is a quaternion extension of F containing M.
For an elementary proof of this theorem, see the paper [2].
Corollary. If a quadratic extension $F(\sqrt{m})$ of F is embeddable into a quaternion extension of F, then m is a sum of three squares in F.

1. Let $p \equiv 3(\bmod 4)$ be a prime number. $\quad p$ is expressed as a sum of 3 non-zero squares in Z_{p} ($=$ the ring of p-adic integers): $p=a^{2}+b^{2}+c^{2}$, $a, b, c \in Z_{p}, a b c \neq 0$. (For example, $19=1^{2}+3^{2}+3^{2}, 23=2^{2}+4^{2}+(\sqrt{3})^{2}$, $\sqrt{3} \in Z_{23}$.)

We put $m=p, n=a^{2}+b^{2}, \alpha=\sqrt{m n}(\sqrt{m}+\sqrt{n})(\sqrt{n}+a)$ (in an algebraic closure of $\left.\boldsymbol{Q}_{p}\right)$. Then $K=\boldsymbol{Q}_{p}(\sqrt{\alpha})$ is a quaternion extension of \boldsymbol{Q}_{p} which contains the biquadratic field $M=\boldsymbol{Q}_{p}(\sqrt{p}, \sqrt{-1}, \sqrt{-p})$. (cf. [1]).

The field M is the unique biquadratic bicyclic extension of \boldsymbol{Q}_{p} which contains all quadratic extensions of \boldsymbol{Q}_{p}.

Consequently, we see that, for any $r \in \boldsymbol{Q}_{p}^{\times}, \sqrt{r} \in \boldsymbol{Q}_{p}(\sqrt{r}) \subseteq M$ whence $r \in M^{2}$ and, in particular, $\sqrt{m}, \sqrt{n} \in M \Rightarrow \alpha \in M$.

Therefore, by the proposition in $\mathbf{0}, K=\boldsymbol{Q}_{p}(\sqrt{\alpha})$ with α given above is the unique quaternion extension of \boldsymbol{Q}_{p} (in a fixed algebraic closure of \boldsymbol{Q}_{p}).
2. For $p=2$, there exist exactly seven quadratic extensions of \boldsymbol{Q}_{2} :

$$
Q_{2}(\sqrt{-1}), \quad Q_{2}(\sqrt{ \pm 2}), \quad Q_{2}(\sqrt{ \pm 5}), \quad Q_{2}(\sqrt{ \pm 10})
$$

Since -1 cannot be expressed as a sum of 3 squares in $\boldsymbol{Q}_{2}, \boldsymbol{Q}_{2}(\sqrt{-1})$ is not embeddable into any quaternion extension of \boldsymbol{Q}_{2}. All biquadratic bicyclic extensions of \boldsymbol{Q}_{2} which do not contain $\boldsymbol{Q}_{2}(\sqrt{-1})$ are $\boldsymbol{Q}_{2}(\sqrt{2}, \sqrt{5})$, $\boldsymbol{Q}_{2}(\sqrt{2}, \sqrt{-5}), \boldsymbol{Q}_{2}(\sqrt{5}, \sqrt{-2}), \boldsymbol{Q}_{2}(\sqrt{10}, \sqrt{-2})$. Among these fields, by Witt's theorem, exactly three fields $M_{1}=\boldsymbol{Q}_{2}(\sqrt{2}, \sqrt{-5}), M_{2}=\boldsymbol{Q}_{2}(\sqrt{5}, \sqrt{-2}), M_{3}=$ $\boldsymbol{Q}_{2}(\sqrt{10}, \sqrt{-2})$ are embeddable into quaternion extensions of \boldsymbol{Q}_{2}. (cf. [2]). In fact, the following six fields

$$
\begin{aligned}
& \boldsymbol{Q}_{2}(\sqrt{ \pm \sqrt{6}(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)}) \supseteq M_{1}=\boldsymbol{Q}_{2}(\sqrt{2}, \sqrt{-5})=\boldsymbol{Q}_{2}(\sqrt{2}, \sqrt{3}), \\
& \boldsymbol{Q}_{2}(\sqrt{ \pm \sqrt{30}(\sqrt{6}+\sqrt{5})(\sqrt{5}+1)}) \supseteq M_{2}=\boldsymbol{Q}_{2}(\sqrt{5}, \sqrt{-2})=\boldsymbol{Q}_{2}(\sqrt{5}, \sqrt{6}), \\
& \boldsymbol{Q}_{2}(\sqrt{ \pm \sqrt{110}(\sqrt{11}+\sqrt{10})(\sqrt{10}+1)}) \supseteq M_{3}=\boldsymbol{Q}_{2}(\sqrt{10}, \sqrt{-2})=\boldsymbol{Q}_{2}(\sqrt{10}, \sqrt{11})
\end{aligned}
$$

are the quaternion extensions of \boldsymbol{Q}_{2}. (cf. Th. in [1]).
If we denote by M any one of three fields M_{1}, M_{2} and M_{3}, we see that $\sqrt{-1} \notin M$ and, for any $r \in \boldsymbol{Q}_{2}^{\times}$, either $\sqrt{r} \in M$ or $\sqrt{-r} \in M$.

Therefore, by the proposition in 0 , the six fields given above are exactly all quaternion extensions of \boldsymbol{Q}_{2} (in a fixed algebraic closure of \boldsymbol{Q}_{2}).

References

[1] G. Fujisaki: An elementary construction of Galois quaternion extension. Proc. Japan Acad., 66A, 80-83 (1990).
[2] C. Jensen and N. Yui: Quaternion Extensions. Algebraic Geometry and Commutative Algebra. vol. 1, Kinokuniya, pp. 155-182 (1988).
[3] H. Reichardt: Über Normalköper mit Quaternionengruppe. Math. Zeitschrift, 41, 218-221 (1936).
[4] E. Witt: Konstruktion von galoisschen Köpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p^{f}. J. Reine Angew. Math., 174, 237-245 (1936).

