57. Convergence Theorems for the Pseudo-Conformally Invariant Nonlinear Schrödinger Equation

By Hayato NAWA

Department of Mathematics, Tokyo Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1990)

§1. Introduction. L^{α} denotes the space of α -summable function on \mathbb{R}^{N} with the norm $\|\cdot\|_{\alpha}$. H^{s} represents the standard Sobolev space of order s on \mathbb{R}^{N} . We will use the abbreviation $\|\cdot\|=\|\cdot\|_{2}$. We put $i=\sqrt{-1}$, $\sigma=2+4/N$, $\partial_{t}=\partial/\partial t$, $\partial_{j}=\partial/\partial x_{j}$ $(j=1, \dots, N)$, $\mathcal{V}=(\partial_{1}, \dots, \partial_{N})$ and $\Delta=\mathcal{V}\cdot\mathcal{V}$ (Laplace operator on \mathbb{R}^{N}). $(I; L^{\alpha})$ denotes the space of continuous functions from a interval $I \subset \mathbb{R}$ to L^{α} with the norm $\|\cdot\|_{\alpha,\infty,I} = \sup_{t\in I} \|\cdot(t)\|_{\alpha}$. If $I=\mathbb{R}$, we will use $|\cdot|_{\alpha,\infty,\mathbb{R}} = |\cdot|_{\alpha,\infty}$. μ denotes the Lebesgue measure on \mathbb{R}^{N} . For brevity we write $[f > \gamma] = \{x \in \mathbb{R}^{N}; f(x) > \gamma\}$.

This paper is concerned with the following Cauchy problem for the nonlinear Schrödinger equation:

$$C(p) \qquad \qquad \begin{array}{l} 2i\partial_t u + \varDelta u + |u|^{P-1}u = 0, \quad (t, x) \in \mathbf{R} \times \mathbf{R}^N, \\ u(0, x) = u_0(x) \quad x \in \mathbf{R}^N, \end{array}$$

where $1 <math>(2^* = 2N/(N-2)$ if $N \ge 3$, arbitrary number larger than 2 if N=1 and 2). It is well known that for any $u_0 \in H^1$, there exist an open interval *I* in *R* containing the origin and a unique solution $u_P(t, x)$ of C(p) in $C(I; H^1)$ which satisfies two conservation laws;

$$(1) ||u_P(t)|| = ||u_0||,$$

(2)
$$E_{P+1}(u_P) = \|\nabla u_P\|^2 - \frac{2}{p+1} \|u_P\|_{P+1}^{P+1} = E_{P+1}(u_0).$$

If $1 , <math>u_p$ exists globally in time, i.e., I = R by (2) and the Gagliardo-Nirenberg inequarity. That is, there is a positive constant $C(p, E_p)$ such that

$$(3) \qquad |\nabla u_P|_{2,\infty}, \qquad |u_P|_{P+1,\infty} < C(p, E_P).$$

If $p \ge 1+4/N$, however, there exist singular solar solutions exploding their L^2 norms of the gradient in finite time (blow-up): Each singular solution u(t) shows that

(4) $\lim_{t\to T} \|\nabla u(t)\| = \infty$ for some $T \in \mathbf{R}$.

So it can occur that

Thus our purpose is to obtain more precise analysis of the behavior of (u_P) as $p \uparrow 1+4/N$ in $C(\mathbf{R}; L^{\sigma})$ (or $C(\mathbf{R}; H^1)$). We will consider the rescaling function:

(6) $u_{P,\lambda}(t, x) = \lambda_P^{N/2} u_P(\lambda_P^2 t, \lambda_P x),$

where

(7) $\lambda_{P}=1/|u_{P}|_{\sigma,\infty}^{\sigma/2} \quad (\rightarrow 0 \text{ as } p \uparrow 1+4/N).$

This leads in a natural way to the consideration of functions u(t, x) in $C(\mathbf{R}; H^1)$ satisfying the pseudo-conformally invariant nonlinear Schrödinger equation:

(LP) $2i\partial_t u + \Delta u + \lambda |u|^{4/N} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N,$

where

(8) $(0\neq) \quad \lambda \equiv \lim_{P \uparrow 1+4/N} \lambda_P^{-N(P+1-\sigma)/2} \quad (\leq 1).$

Here we note that (LP) arises in the nonlinear optics as a model of the self-forcusing of a laser beam.

Our main result is the following

Theorem A. Let $\{u_P\}$ be a family of solutions of C(p)'s for $1 in <math>C(\mathbf{R}; H^1)$ with (5). Let $\{p_n\}$ be a sequence such that $p_n \uparrow 1 + 4/N$ and $\lim_{n\to\infty} |\nabla u_P|_{2,\infty} = \lim_{n\to\infty} |u_P|_{\sigma,\infty} = \infty$ as $n \to \infty$. Set

(A.1)
$$\lambda_n = \lambda_{P_n}, \qquad u_n(t, x) = u_{P_n, \lambda_n}(t, x),$$

(A.2)
$$E_{\sigma,\lambda}(v) = \|\nabla v\|^2 - \frac{2}{\sigma}\lambda \|v\|_{\sigma}^{\sigma}.$$

Then there exists a subsequence of $\{u_n\}$ (we still denote it by $\{u_n\}$) which satisfies the following properties: one can find $L \in \mathbb{N}$, solutions $\{u^i\}$ of (LP)in $C(\mathbf{R}; H^1)$ with $E_{\sigma,\lambda}(u^j) = 0$ and sequences $\{(s_n, y_n^j)\}$ in $\mathbf{R} \times \mathbf{R}^N$ for $1 \leq j \leq L$ such that

(A.3) $\lim_{n\to\infty} |(s_n, y_n^j) - (s_n, y_n^k)| = \infty \quad (j \neq k),$

(A.4) $u_n^1 \equiv u_n(\cdot + s_n, \cdot + y_n^1) \rightarrow u^1 weakly^* in L^{\infty}(\mathbf{R}, H^1),$

(A.5) $u_n^j \equiv (u_n^{j-1} - u^{j-1})(\cdot, \cdot + y_n^j) \rightarrow u^j \quad (j \ge 2) \quad weakly^* \text{ in } L^{\infty}(\mathbf{R}; H^1),$

(A.6)
$$\lim_{n\to\infty}\int_{I} \{E_{\sigma,\lambda}(u_n^j) - E_{\sigma,\lambda}(u_n^j - u^j) - E_{\sigma,\lambda}(u^j)\} dt = 0, \quad \text{for any } I \subset \mathbf{R},$$

(A.7) $\lim_{n\to\infty} ||u_n^1(0) - u^1(0)||_{\sigma} = 0.$

Corollary B. Let Q be a nontrivial minimal L^2 norm solution to $\Delta Q - Q + |Q|^{4/N} = 0$ ($Q \in H^1$). If $||u_P(t)|| = ||Q||$, then we have L = 1 (in Theorem A) and

(B.1)
$$\lim_{n\to\infty} \|u_n^1(0) - u^1(0)\|_2 = \lim_{n\to\infty} \|\nabla u_n^1(0) - \nabla u^1(0)\|_2 = 0,$$

where u^{ι} is a solution of (LP) with $\lambda = 1$.

§2. Sketch of proof. First we note that the rescaling function u_n is a solution of

9)
$$2i\partial_t u_n + \Delta u_n + \lambda_n^{-N(P+1-\sigma)/2} |u_n|^{P-1} u_n = 0,$$

and satisfies

(

(12)

(10) $||u_n|| = ||u_0||, ||u_n|_{\sigma,\infty} = 1,$

(11) $\operatorname{limsup}_{n \to \infty} E_{\sigma, \lambda}(u_n) \leq 0, \text{ for some } t \in \mathbf{R}.$

Thus one can see that $\{u_n\}$ is a bounded sequence in $L^{\infty}(\mathbf{R}; H^1)$ by (11) and the Gagliardo-Nirenberg, so that we have from (10) and (11),

Lemma 1. u_n satisfies

 $\sup_{t \in \mathbf{R}} \mu([|u_n(t, \cdot)| > \eta]) > C$

for some constants η , C>0 independent of n.

We proceed.

Lemma 2. $\{u_n\}$ is an equicontinuous family in $C(\mathbf{R}; L^2)$, and form an equibounded family in $C(\mathbf{R}; H^1)$ such that (12) holds true for some constants

 η , C>0 independent of n (by Lemma 1), so that there exist a sequence $\{(s_n, y_n^1)\} \subset \mathbf{R} \times \mathbf{R}^N$ such that

(13) $u_n(\cdot + s_n, \cdot + y_n^1) \rightarrow u^1 \neq 0 \qquad as \ n \rightarrow \infty$

weakly* in $L^{\infty}(\mathbf{R}; H^1)$ and strongly in $C(I; L^2(\Omega))$, where $I \subset \mathbf{R}$ and $\Omega \subset \mathbf{R}^N$.

Lemma 3. $\{u_n\}$ is a uniformly bounded sequence in $L^{\sigma}(I \times R)$ for any interval I in **R** and we have that $u_n \rightarrow u^1$ a.e. $I \times R^N$ (by Lemma 2). Then, (14) $|u_n|^{4/N}u_n - |u_n - u^1|^{4/N}(u_n - u^1) - |u^1|^{4/N}u^1 \rightarrow 0$ as $n \rightarrow \infty$ in $L^{\sigma'}(I \times R^N)$, and

(15)
$$\lim_{n\to\infty} \int_{I} \left(\int_{\mathbb{R}^{N}} ||u_{n}|^{\sigma} - |u_{n} - u^{1}|^{\sigma} - |u^{1}|^{\sigma} |dx \right) dt = 0,$$

where $1/\sigma + 1/\sigma' = 1$.

Lemma 4. Put $u_n^1 \equiv u_n(\cdot + s_n, \cdot + y_n^1)$. $u^1 \in C(\mathbf{R}; H^1)$ is a solution of (LP) and satisfies

(16)
$$\lim_{n\to\infty}\int_{I} \{E_{\sigma,\lambda}(u_{n}^{1}) - E_{\sigma,\lambda}(u_{n}^{1} - u^{1}) - E_{\sigma,\lambda}(u^{1})\}dt = 0$$

for $I \subset R$.

Suppose $\lim_{n\to\infty} |u_n^1-u^1|_{\sigma,\infty}\neq 0$. At this stage, we consider $f_n^2 \equiv u_n^1-u^1$ which also forms a bounded sequence in $L^{\infty}(\mathbf{R}; H^1)$. It is worth while to note that f_n^2 enjoys the property

(17) $2i\partial_t f_n^2 + \Delta f_n^2 + \lambda |f_n^2|^{4/N} f_n^2 \rightarrow 0$

weakly* in $L^{\infty}(\mathbf{R}; H^{-1})$ as $n \to \infty$. Repeating the above argument, we obtain the main assertion of Theorem A. We also have

Proposition B. If u is a global solution of (LP) such that $u \in C(\mathbf{R}; H^1)$, then $E_{q,l}(u) \geq 0$.

Thus we can complete the proof of Theorem A.

Remarks. 1. Theorem A is closely related to a phenomenon which has been observed in various nonlinear problems by the name of bubble theorem or concentration-compactness theorem (for example, see [1], [4] and their references).

2. (B.1) suggests that blow-up solutions may exist beyond the blowup time in some sense.

3. Lemma 2 is a space-time version of Lieb [3; Lemma 6], and Lemma 3 is a variant of Brézis-Lieb [2].

4. The proof of Theorem A is inspired by the work of Brézis-Coron[1]. One may find the idea of it in [4].

References

- Brézis, H. and Coron, J. M.: Convergence of H-system or how to blow bubbles. Arch. Rat. Mech. Anal., 82, 313-376 (1983).
- [2] Brézis, H. and Lieb, E. H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 88, 486-490 (1983).
- [3] Lieb, E. H.: On the lowest eigenvalue of Laplacian for the intersection of two domains. Invent. Math., 74, 441-448 (1983).
- [4] Nawa, H.: Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity. II (to appear in Kodai Math. J., 13 (1990)).