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1. Introduction. L" denotes the space of cr-summable function on
R" with the norm ]1" I1. H represents the standard Sobolev space of
order s on R". We will use the abbreviation II" II--II" II. We put i--J-1,
a-2+4/N, =/t, --/x (]=I,...,N), --(,...,z) and =.
(Laplace operator on R). (I;L") denotes the space of continuous func-
tions from a interval IcR to L" with the norm[. =sup.te[[ .(t),. If
I=R, we will use[. =" .... Z denotes the Lebesgue measure on R".
For brevity we write [f] {x e R f(x)) }.

This paper is concerned with the following Cauchy problem for the
nonlinear SchrSdinger equation"

C(p) 2ituWu+[u]-’u=O, (t, x)e RR,
u(O, x)=uo(x) x e R,

where lp2*--I (2* 2N/ (N 2) if N3, arbitrary number larger
than. 2 if N=I and 2). It is well known that for any u0 e H’, there exist
an open interval I in R containing the origin and a unique solution ue(t, x)
of C(p) in C(I; H) which satisfies two conservation laws;
( 1 ) uAOIl Uo II,
( 2 ) E+(u)=ilu]-lu

If IpI+4/N, ue exists globally in time, i.e., I=R by (2) and the
Gagliardo-Nirenberg inequarity. That is, there is a positive constant
C(p, E) such that
( 3 ) u[,, lul, <c(p, E).
If pI+4/N, however, there exist singular solar solutions exploding
their L norms of the gradient in finite time (blow-up)" Each singular
solution u(g) shows that
( 4 ) limr gu()]= for some T e R.
So it can occur that
( 5 ) limsup +/1u], limsup +ul, .
Thus, our purpose is to obtain more precise analysis of the behavior of
(u) as p 1+4/N in C(R; L) (or C(R;Hg). We will consider the rescal-
ing unetion
(6) u,,(t, x) /u(2t, 2x),
where
(7) 2=1/]u1;( (0 as p 1+4/N).
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This leads in a natural way to the consideration of functions u(t, x) in
C(R; H) satisfying the pseudo-conformally invariant nonlinear SchrSd-
infer equation"
(LP) 2iu+u--[ul/u--O, (t, x)e RR,
where
(8) (0=/=) -----lim//(/-)/ (_<_1).
Here we note that (LP) arises in the nonlinear optics as a model of the
s.el-orcusing of a laser beam.

Our main result is. the ollowing

Theorem A. Let {up} be a family of solutions of C(p)’s for 1pl

4IN in C(R; H1) with (5). Let {p} be a sequence such that Pn l+4/N
and limlupl,=limnlupl,=c as n-c. Set
(A.1) , u(t, x)=u,(t, x),

(A.2) E,(v) --II gv 2- 2 v

Then there exists a subsequence of {un} (we still denote it by {u})which
satisfies the following properties: one can find L e N, solutions {uJ} of (LP)
in C(R; H) with E,(uJ)=0 and sequences {(sn, y)} in RR for
such that
(A.3)
(A.4)
(A.5)

(A.6)

(A.7)

lim.l (sn, y)--(sn, y)]= c
u--u(. +s, +y)-.u weakly* in L(R, H),
u(u---u-)(., +y)ou (]2) weakly* in L(R;

lim _-{E’(u)--E’(u--u)-E’(u)}dt=O’ for any IR,

lim u(O) u(O)] O.
Corollary B. Let Q be a nontrivial minimal L norm solution to AQ-

Q+Q]/=0 (Q e H). If u(t)]= Q , then we have L= 1 (in Theorem A)
and
(B.1) lim[]u(O)--u(O)[=lim]]gu(O)--gu’(O)]]=O,
where u is a solution of (LP) with = 1.

2. Sketch of proof. First we note that the resoling uncion u is
a solution of
( 9 ) 2itu+U+(+)U]-u=O,
and satisfies
(10) u u0 ], [u,, 1,
(11) limsupE,(Un)gO, or some t e R.
Thus one can see that {u} is a bounded sequence in L(R; H) by (11) and
the Gagliardo-Nirenberg, so that we have rom (10) and (11),

Lemma 1. Un satisfies
(12) sUPteR fl([]Un(t, ")]> ])> C
for some constants , C 0 independent of n.

We proceed.
Lemma 2. (u} is an equicontinuous family in C(R; L), and form an

equibounded family in C(R H) such that (12) holds true for some constants
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, CO independent of n (by Lemma 1), so that there exist a sequence
{(s, y)} R R such that
(13) Un(" +Sn, +Y)--Ul:/:O as n-+c
weakly* in L(R; H) and strongly in C(I L(tO)), where IR and t2R’.

Lemma 3. {un} is a uniformly bounded sequence in L(I R) for any
interval I in R and we have that u-u a.e. IX R (by Lemma 2). Then,
(14) tUn[4/NUn--lUn--Ull4/N(Un--Ul)--]ull4’Nul----O as n-oo
in L’(I RN) and

(15) limS ( [[Unl--[un--u[--lulldx)dt=O,
where 1/a+l/a’--1.

Lemma 4. Put u--u(. +Sn, +Yn)" U e C(R H) is a solution of (LP)
and satisfies
(16) limn _[ {E,(u) E,(u-u) E,(u)}dt= 0

for IR.
Suppose limnlu-ulo,=/:O. At this stage, we consider f=__ui-u

which also forms, a bounded sequence in L(R;Hg. It is worth while to
note that f enjoys, the property
(17) 2itf+ zlf+[fn 14/ r-+Ojn

weakly* in L(R; H-9 as n-c. Repeating the above argument, we
obtain the main assertion of Theorem A. We also have

Proposition B. If u is a global solution of (LP) such that u e C(R H),
then E,(u) >=0.

Thus we can complete the proo of Theorem A.
Remarks. 1. Theorem A is closely related to a phenomenon which

has been observed in various nonlinear problems by the name of bubble
theorem or concentration-compactness theorem (for example, see [1], [4]
and their references).

2. (B.1) suggests that blow-up solutions may exist beyond the blow-
up. time in some sense.. Lemma 2 is a space-time version of Lieb [3; Lemma 6], and
Lemma 3 is. a variant o Brzis-Lieb [2].

4o The proo of Theorem A is inspired by the work o Brzis-Coron
[1]. One may find the idea of it in [4].
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