48. Twisting Symmetry-spins of Pretzel Knots*)

By Masakazu Teragaito
Department of Mathematics, Kobe University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1990)

Let π be the commutator subgroup of the knot group of a knot in the 4 -sphere S^{4}. In [1] it is shown that if π is finite, then $\pi=G \times Z_{a}$ where $G=\{1\}$, the quaternion group $Q(8)$, the binary icosahedral group I^{*} or the generalized binary tetrahedral group $T(k)$ and d is an odd integer which is relatively prime to the order of G. Conversely, Yoshikawa [10] has shown that these groups can be realized as the commutator subgroups of the knot groups of knots in S^{4} except $Q(8) \times Z_{d}, d>1$. Actually, these knots were constructed by twist-spinning certain 2-bridge knots and pretzel knots. The exceptional groups were realized only as the commutator subgroups of knot groups of knots in homotopy 4 -spheres. Note that $Q(8) \times \boldsymbol{Z}_{d}$ is isomorphic to the fundamental group of a prism manifold M_{d}, that is, the Seifert fibered manifold with invariants $\left\{b:\left(o_{1}, 0\right):(2,1),(2,1),(2,1)\right\}, d=$ $|2 b+3|$ (cf. [3], [7]). Since then, by using the deform-spinning introduced by Litherland [6], Kanenobu [4] and the author [9] showed that for $d=5$, 11,13 and 19 (equivalently $b=-4,4,-8$ and 8), there is a fibered 2 -knot in S^{4} whose fiber is the punctured prism manifold M_{d}°; thus for these values of d, the groups $Q(8) \times Z_{d}$ are realized as the commutator subgroups of knot groups of knots in S^{4}. It should be noted that a fibered 2 -knot with fiber $M_{d}^{\circ}(d>1)$ cannot be constructed by twist-spins (cf. [2]).

The purpose of this paper is to show that other three values can be realized.

Theorem. There exists a fibered 2-knot in S^{4} whose fiber is a punctured prism manifold M_{d}° with fundamental group isomorphic to $Q(8) \times \boldsymbol{Z}_{d}$ for $d=$ $3,5,11,13,19,21,27$.

Our examples for the cases $d=3,21,27$ will be constructed by a product of two symmetry-spinnings and 1-twist-spinning for pretzel knots. It is unknown whether there exists such a fibered 2 -knot in S^{4} for any other value of d.

All maps and spaces are assumed to be in the PL category, and all manifolds are oriented. A circle is identified with the quotient space $\boldsymbol{R} / \boldsymbol{Z}$. The unit interval $[0,1]$ is denoted by I.

1. Construction. Let $\left(S^{3}, K\right)$ be a knot and suppose that there are orientation-preserving periodic homeomorphisms $g_{i}(i=1,2)$ on (S^{3}, K) of order n_{i} such that $g_{1} g_{2}=g_{2} g_{1},\left(n_{1}, n_{2}\right)=1$, and $J_{1} \cup J_{2}$ is the Hopf link with $l k\left(J_{1}, J_{2}\right)=1$, where $J_{i}=\operatorname{Fix}\left(g_{i}\right),(i=1,2)$. Let $n=n_{1} n_{2}, g=g_{1} g_{2}$. Let q :

[^0]$S^{3} \rightarrow S^{3} / g$ be the quotient map, and $\bar{K}=q(K), \bar{J}_{i}=q\left(J_{i}\right)$. The map q is the $\boldsymbol{Z}_{n_{1}} \oplus \boldsymbol{Z}_{n_{2}}$-branched cover branched over $\bar{J}_{1} \cup \bar{J}_{2}$, corresponding to Ker $\left[\pi_{1}\left(S^{3}-\right.\right.$ $\left.\left.\bar{J}_{1} \cup \bar{J}_{2}\right) \rightarrow H_{1}\left(S^{3}-\bar{J}_{1} \cup \bar{J}_{2}\right) \rightarrow Z_{n_{1}} \oplus Z_{n_{2}}\right]$, where the last homomorphism sends a meridian $t_{1}\left(t_{2}\right.$ resp.) of $\bar{J}_{1}\left(\bar{J}_{2}\right.$ resp.) to (1,0) $((0,1)$ resp. $) \in Z_{n_{1}} \oplus Z_{n_{2}}$. Let $\bar{K} \times D^{2}$ be a tubular neighbourhood of \bar{K} disjoint from \bar{J}_{1} and \bar{J}_{2}, and $X(\bar{K})$ $=\operatorname{cl}\left(S^{3}-\bar{K} \times D^{2}\right)$. It is well-known that there is a map $\bar{p}: X(\bar{K}) \rightarrow \partial D^{2}$ such that $\bar{p} \mid \partial X(\bar{K}): \partial X(\bar{K})=\bar{K} \times \partial D^{2} \rightarrow \partial D^{2}$ is the projection (cf. [5: Ch. 3], [8: Ch. 5]). Then $q^{-1}\left(\bar{K} \times D^{2}\right)$ is a g-invariant tubular neighbourhood $K \times D^{2}$ of K with $q(x, v)=(n x, v), x \in K, v \in D^{2}$. We always assume that $K \times$ $v\left(v \in \partial D^{2}\right)$ is null-homologous in $X(K)=c l\left(S^{3}-K \times D^{2}\right)$. Since $j_{j}=l k\left(K, J_{i}\right)$ is coprime to n_{i}, we can choose an integer k_{i} such that $j_{i} k_{i} \equiv 1\left(\bmod n_{i}\right)$. It follows that $g_{i} \mid K \times D^{2}$ is given by $(x, v) \rightarrow\left(x+k_{i} / n_{i}, v\right)$. Then $g \mid K \times D^{2}$: $(x, v) \rightarrow(x+k / n, v), k=k_{2} n_{1}+k_{1} n_{2}$. Take a collar $\partial X(K) \times I$ of $\partial X(K)=K \times$ ∂D^{2} such that $\partial X(K)$ is identified with $\partial X(K) \times\{0\}$, which is disjoint from J_{1} and J_{2}. Define two homeomorphisms $t, s_{n, k}:\left(S^{3}, K\right) \rightarrow\left(S^{3}, K\right)$ as follows:
\[

$$
\begin{aligned}
t(x, \theta, \phi) & =(x, \theta+\phi, \phi) & & \text { for }(x, \theta, \phi) \in K \times \partial D^{2} \times I, \\
t(y) & =y & & \text { for } y \notin \partial X(K) \times I, \\
s_{n, k}(x, \theta, \phi) & =(x-k(1-\phi) / n, \theta, \phi) & & \text { for }(x, \theta, \phi) \in K \times \partial D^{2} \times I, \\
s_{n, k}(x, v) & =(x-k / n, v) & & \text { for }(x, v) \in K \times D^{2}, \\
s_{n, k}(y) & =y & & \text { for } y \in X(K)-\partial X(K) \times I .
\end{aligned}
$$
\]

Then $s_{n, k} g\left|K \times D^{2}=i d, s_{n, k} g\right| c l(X(K)-\partial X(K) \times I)=g$, and $\bar{p} q\left(s_{n, k} g \mid X(K)\right)=$ $\bar{p} q$. Note that $\bar{p} q: X(K) \rightarrow \partial D^{2}$ is the map whose restriction $\bar{p} q \mid \partial X(K)$: $\partial X(K)=K \times \partial D^{2} \rightarrow \partial D^{2}$ is the projection. Fix a point x on K. Take a ball neighbourhood of K_{-}of x in K, and set $B_{-}=K_{-} \times D^{2}$. Then (B_{-}, K_{-}) is a standard ball pair. Let $\left(B_{+}, K_{+}\right)$be the complementary ball pair. For any nonzero integer m, construct $\partial\left(B_{+}, K_{+}\right) \times B^{2} U_{\partial}\left(B_{+}, K_{+}\right) \times_{t^{m_{s i n g}}} \partial B^{2}$. This is a locally flat sphere pair depending only on the isotopy classes τ of t, and $\omega_{n, k}$ of $s_{n, k} g \#\left(\mathrm{rel} \# K \times D^{2}\right)\left[6:\right.$ Lemma 1.2]. We write $\tau^{m} \omega_{n, k} K$ for this 2-knot in S^{4}. Remark that $\omega_{n, k}$ is an untwisted deformation with respect to ($\bar{p} q$, $K \times D^{2}$) in terms of [6]. The main theorem of [6] states that $\tau^{m} \omega_{n, k} K$ is fibered.
2. The fiber. Let a, b be coprime integers with $b \neq 0$. Let $\Phi: K \times$ $\partial D^{2} \rightarrow K \times \partial D^{2}$ be a homeomorphism $(x, \theta) \rightarrow(x+b \theta, a \theta)$. By $S^{3}(K, a / b)$ we mean the manifold obtained from S^{3} by removing $K \times D^{2}$ and sewing it back using Φ. Let K^{*} denote the image of $K \times\{0\}$ under this surgery. Moreover, for any integers c, d with $d \neq 0$, choose coprime integers a, b with $a / b=c / d$, and let $S^{3}(K, c / d)=S^{3}(K, a / b)$.

Proposition. Let $\left(S^{2}, K\right)$ be a knot having the property as described in Section 1. Let $\bar{K}, \bar{J}_{i}, k_{i}(i=1,2), k=k_{2} n_{1}+k_{1} n_{2}, n$ be as before. For $m>0$, let M be the $m n$-fold cyclic branched covering space of $S^{3}(\bar{K}, m / k)$ branched over $\bar{K}^{*} \cup \bar{J}_{1} \cup \bar{J}_{2}$, corresponding to $\operatorname{Ker}\left[\pi_{1}\left(S^{3}-\bar{K} \cup \bar{J}_{1} \cup \bar{J}_{2}\right) \rightarrow \boldsymbol{Z}\left\langle t_{0}\right\rangle \times \boldsymbol{Z}\left\langle t_{1}\right\rangle \times\right.$ $\left.\boldsymbol{Z}\left\langle t_{2}\right\rangle \rightarrow \boldsymbol{Z}_{m n}\langle t\rangle\right]$. Here $t_{0}\left(t_{1}, t_{2}\right.$ resp.) corresponds to a meridian of $\bar{K}\left(\bar{J}_{1}, \bar{J}_{2}\right.$ resp.) and the last homomorphism sends t_{0} to t, and $t_{1} t_{2}$ to t^{-m}. Then the fiber of $\tau^{m} \omega_{n, k} K$ is M°.

Note that the projection $M \rightarrow S^{3}(\bar{K}, m / k)$ is n to 1 over $\bar{K}^{*}, m n_{2}$ to 1 over $\bar{J}_{1}, m n_{1}$ to 1 over \bar{J}_{2}. This proposition is a generalization of Proposition 5.4 of [6], and can be proved similarly. We shall show its sketch and how to identify the manifold M.

Sketch of the proof. In [6] it is shown that the closed fiber is $M=K$ $\times D^{2} \cup_{\beta}\left\{(y, \phi) \in X(K) \times_{s_{n, k}} S^{1} \mid p(y)=m \phi\right\}$, where $\beta: K \times \partial B^{2} \rightarrow\{(y, \phi) \in \partial X(K)$ $\left.\times_{s_{n, k g}} S^{1} \mid p(y)=m \phi\right\}$ is given by $(x, \phi) \rightarrow((x, m \phi), \phi)$, and $p=\bar{p} q$. Then g acts on M naturally, since $p g=p$. Let $M_{1}=M / g$. It is easy to see that M_{1} is obtained from $\Sigma_{m}(\bar{K})$, the m-fold cyclic branched covering space of S^{3} over \bar{K}, by performing $1 / k$-surgery (with respect to the induced framing) along the lift of \bar{K}. Thus M_{1} is the m-fold cyclic branched covering space of $S^{3}(\bar{K}, m / k)$ over \bar{K}^{*}. These observations imply that M is as described in Proposition.

Given such a knot K, we can construct M as follows. Take $\Sigma_{m}(\bar{K})$ and let \tilde{J}_{i} be the lift of $\bar{J}_{i}(i=1,2)$, which is not necessarily connected. Let M_{1} be the manifold obtained from $\Sigma_{m}(\bar{K})$ by performing $1 / k$-surgery along the lift of \bar{K}, and let \tilde{J}_{i}^{*} be the image of \tilde{J}_{i}. Finally take the $Z_{n_{1}} \oplus Z_{n_{2}}$-branched covering space of M_{1} over $\tilde{J}_{1}^{*} \cup \tilde{J}_{2}^{*}$, and we get M. In particular, if \bar{K} is unknotted, then $\Sigma_{m}(\bar{K})$ and M_{1} are homeomorphic to S^{3}. Actually we will deal with only this case.
3. Proof of Theorem. Let $P(m, n)$ be the pretzel knot as illustrated in Fig. 1, where n is an odd integer, and $2 m+1$ denotes the number of half-twists (left-handed if $m \geq 0$, right if $m<0$). Note that $P(0, n)$ and $P(-1, n)$ are torus knots of type $(2, n),(2,-n)$, respectively. It is clear that $P(m, n)$ has two symmetries g_{1} of order n, and g_{2} of order 2 such that $g_{1} g_{2}=g_{2} g_{1}$. Put $J_{i}=\operatorname{Fix}\left(g_{i}\right)(i=1,2)$, and orient them such that $l k\left(P(m, n), J_{1}\right)$ $=2, l k\left(P(m, n), J_{2}\right)=(-1)^{m} n, l k\left(J_{1}, J_{2}\right)=1$. Thus the knot $P(m, n)$ has the property as described in Section 1. By considering a suitable power of g_{1}, we may assume $k= \pm 1$, and consider these cases.

Lemma 1. Let $P(m, n)$ be as above. Then the closed fiber of $\tau^{1} \omega_{2 n, k} P(m$, n), $k= \pm 1$, is given as follows:
(1) the Seifert fibered manifold $\left\{0:\left(o_{1}, 0\right):(m, 1), \cdots n \cdots,(m, 1)\right\}$ if $k=1$ and $m \neq 0$,
(2) the Seifert fibered manifold $\left\{0:\left(o_{1}, 0\right):(m+1,1), \cdots n \cdots,(m+\right.$ $1,1)\}$, if $k=-1$ and $m \neq-1$,
(3) $\#^{n-1} S^{2} \times S^{1}$, if $k=1$ and $m=0$, or $k=-1$ and $m=-1$.

Proof. We shall follow the procedure given in Section 2 in determining the closed fiber. Let $q: S^{3} \rightarrow S^{3} / g_{1} g_{2}$ be the quotient map, let $\bar{P}(m, n)=$ $q(P(m, n)), \bar{J}_{i}=q\left(J_{i}\right)(i=1,2)$. Note that $\bar{P}(m, n)$ is unknotted (Fig. 1). Since we consider the 1-twist-spinning, M_{1} is obtained from S^{3} by performing $1 / k$-surgery along $\bar{P}(m, n)$, and it follows that M_{1} is homeomorphic to S^{3}. Trivialize the surgery by ($-k$)-twist (cf. [8]), and let J_{i}^{*} be the image of \bar{J}_{i} under ($-k$)-twist ($i=1,2$) (Fig. 2). Finally we must take the $Z_{n} \oplus Z_{2}$ branched covering space of M_{1} over $J_{1}^{*} \cup J_{2}^{*}$, corresponding to $\operatorname{Ker}\left[\pi_{1}\left(M_{1}-\right.\right.$
$\left.\left.J_{1}^{*} \cup J_{2}^{*}\right) \rightarrow Z\left\langle t_{1}\right\rangle \times Z\left\langle t_{2}\right\rangle \rightarrow Z_{n} \oplus Z_{2}\right]$, where the last homomorphism sends a meridian $t_{1}\left(t_{2}\right.$ resp.) of $J_{1}^{*}\left(J_{2}^{*}\right.$ resp.) to $(1,0)((0,1)$ resp.). Take the n-fold cyclic branched covering over J_{1}^{*}, and identify the lift \widetilde{J}_{2}^{*} of J_{2}^{*}. The result follows by taking the 2 -fold branched covering over \widetilde{J}_{2}^{*}.

Let $Q(m, n)$ be the pretzel knot as illustrated in Fig. 3, where n is an odd integer, $2 m+1$ denotes the number of half-twists (left-handed if $m \geq 0$, right if $m<0$). It is clear that $Q(m, n)$ has two symmetries g_{1} of order n, and g_{2} of order 2, and has the property as described in Section 1. We may assume $k=1$, and consider this case.

Lemma 2. Let $Q(m, n)$ be as above. Then the closed fiber of $\tau^{1} \omega_{2 n, 1}$ $Q(m, n)$ is given as follows:
(1) the Seifert fibered manifold $\left\{-4 n:\left(o_{1}, 0\right):(m+1,1), \cdots n \cdots,(m+\right.$ $1,1)\}$, if $m \neq-1$,
(2) $\#^{n-1} S^{2} \times S^{1}$, if $m=-1$.

Proof. We can determine the closed fiber in the same way as the proof of Lemma 1. See Fig. 4.

Proof of Theorem. In Lemma 1(1) take $(m, n)=(2,3)$, or in Lemma 1(2) take $(m, n)=(1,3)$. Then in either case we get the prism manifold M_{3}. In Lemma 2(1) take $(m, n)=(1,3),(-3,3)$. Then we get the prism manifolds M_{21}, M_{27}, respectively.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[1] J. A. Hillman: High dimensional knot groups which are not two-knot groups. Bull. Austral. Math. Soc., 16, 449-462 (1977).
[2] -: 2-Knots and Their Groups. Austral. Math. Soc. Lecture Series 5, Cambridge Univ. Press, Cambridge (1989).
[3] W. Jaco: Lectures on three manifold topology. Conference board of Math. Science, Regional Conference Series in Math., 43, Amer. Math. Soc. (1980).
[4] T. Kanenobu: Deforming twist spun 2-bridge knots of genus one. Proc. Japan Acad., 64A, 98-101 (1988).
[5] M. Kervaire and C. Weber: A survey of multidimensional knots. Lect. Notes in Math., vol. 685, Springer-Verlag, pp. 61-134 (1978).
[6] R. A. Litherland: Deforming twist-spun knots. Trans. Amer. Math. Soc., 250, 311-331 (1979).
[7] P. Orlik: Seifert manifolds. Lect. Notes in Math., vol. 291, Springer-Verlag (1972).
[8] D. Rolfsen: Knots and Links. Math. Lecture Series 7, Publish or Perish Inc., Berkeley (1976).
[9] M. Teragaito: Twisting symmetry-spins of 2-bridge knots. Kobe J. Math., 6, 117-126 (1989).
[10] K. Yoshikawa: On 2-knot groups with the finite commutator subgroup. Math. Sem. Notes, Kobe Univ., 8, 321-330 (1980).

[^0]: *) Dedicated to Professor Junzo Tao on his 60th birthday.

