45. Some Trace Relations of Twisting Operators on the Spaces of Cusp Forms of Half-integral Weight

By Masaru Ueda
Department of Mathematics, Kyoto University
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1990)

In the papers [3] and [4], we calculated the traces of Hecke operators $\tilde{T}\left(n^{2}\right)$ on the space of cusp forms of half-integral weight $S(k+1 / 2, N, \chi)$ and on the Kohnen subspace $S(k+1 / 2, N, \chi)_{K}$. Moreover we found that the above traces are linear combinations of the traces of certain operators on the spaces $S\left(2 k, N^{\prime}\right)$ (N^{\prime} runs over divisors of $N / 2$). In this paper, we report similar trace relations of the twisting operators on the spaces $S(k+1 / 2, N, \chi)$ and $S(k+1 / 2, N, \chi)_{K}$. Details will appear in [5].

Preliminaries. (a) General notations. Let k denote a positive integer. If $z \in C$ and $x \in C$, we put $z^{x}=\exp (x \cdot \log (z))$ with $\log (z)=\log (|z|)+$ $\sqrt{-1} \arg (z), \arg (z)$ being determined by $-\pi<\arg (z) \leq \pi$. Also we put $e(z)=\exp (2 \pi \sqrt{-1} z)$.

Let $\mathscr{F}_{\mathcal{L}}$ be the complex upper half plane. For a complex-valued function $f(z)$ on $\mathscr{S}_{2}, \alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\boldsymbol{R}), \gamma=\left(\begin{array}{ll}u & v \\ w & x\end{array}\right) \in \Gamma_{0}(4)$ and $z \in \mathscr{S}$, we define functions $J(\alpha, z), j(\gamma, z)$ and $f \mid[\alpha]_{k}(z)$ on \mathscr{S} by $: J(\alpha, z)=c z+d, j(\gamma, z)=\left(\frac{-1}{x}\right)^{-1 / 2}$ $\left(\frac{w}{x}\right)(w z+x)^{1 / 2}$ and $f \mid[\alpha]_{k}(z)=(\operatorname{det} \alpha)^{k / 2} J(\alpha, z)^{-k} f(\alpha z)$.

For a real number $x,[x]$ means the greatest integer m with $x \geq m$. $\left.\left|\left.\right|_{p}\right.$ is the p-adic absolute value which is normalized with $| p\right|_{p}=p^{-1}$. See [1, p. 82] for the definition of the Kronecker symbol $\left(\frac{a}{b}\right)$ (a, b integers with $(a, b) \neq(0,0))$. Let N be a positive integer and m an integer $\neq 0$. We write $m \mid N^{\infty}$ if every prime factor of m divides N. For a finite-dimensional vector space V over C and a linear operator T on $V, \operatorname{tr}(T \mid V)$ denotes the trace of T on V.
(b) Modular forms of integral weight. Let N be a positive integer. By $S(2 k, N)$, we denote the space of all holomorphic cusp forms of weight $2 k$ with the trivial character on the group $\Gamma=\Gamma_{0}(N)$.

Let $\alpha \in G L_{2}^{+}(\boldsymbol{R})$. If Γ and $\alpha^{-1} \Gamma \alpha$ are commensurable, we define a linear operator $[\Gamma \alpha \Gamma]_{2 k}$ on $S(2 k, N)$ by : $f\left|[\Gamma \alpha \Gamma]_{2 k}=(\operatorname{det} \alpha)^{k-1} \sum_{\alpha i} f\right|\left[\alpha_{i}\right]_{2 k}$, where α_{i} runs over a system of representatives for $\Gamma \backslash \Gamma \alpha \Gamma$. For a natural number n with $(n, N)=1$, we put $T(n)=T_{2 k, N}(n)=\sum_{a d=n}\left[\Gamma\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \Gamma\right]_{2 k}$, where the sum is extended over all pairs of integers (a, d) such that $a, d>0, a \mid d, a d=n$. Moreover let Q be a positive divisor of N such that ($Q, N / Q$) =1 and $Q \neq 1$.

Take an element $\gamma(Q) \in S L_{2}(Z)$ which satisfies the conditions:

$$
r(Q) \equiv \begin{cases}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & (\bmod Q) \\
\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & (\bmod N / Q)\end{cases}
$$

Put $W(Q)=\gamma(Q)\left(\begin{array}{ll}Q & 0 \\ 0 & 1\end{array}\right)$. Then $W(Q)$ is a normalizer of Γ and $[W(Q)]_{2 k}$ induces a linear operator on $S(2 k, N)$.
(c) Modular forms of half-integral weight. Let N be a positive integer divisible by 4 and χ an even character modulo N such that $\chi^{2}=1$. Put $\mu=\operatorname{ord}_{2}(N), M=2^{-\mu} N$ and $\Gamma=\Gamma_{0}(N)$.

Let $₫(k+1 / 2)$ be the group consisting of pairs (α, φ), where $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $G L_{2}^{+}(\boldsymbol{R})$ and φ is a holomorphic function on \mathscr{S} satisfying $\varphi(z)=t(\operatorname{det} \alpha)^{-k / 2-1 / 4}$ $J(\alpha, z)^{k+1 / 2}$ with $t \in C$ and $|t|=1$. The group law is defined by: $(\alpha, \varphi(z))$. $(\beta, \psi(z))=(\alpha \beta, \varphi(\beta z) \psi(z))$. For a complex-valued function f on \mathscr{S} and $(\alpha, \varphi) \in$ ©s $(k+1 / 2)$, we define a function $f \mid(\alpha, \varphi)$ on \mathscr{S} by : $f \mid(\alpha, \varphi)(z)=\varphi(z)^{-1} f(\alpha z)$.

By $\Delta=\Delta_{0}(N, \chi)_{k+1 / 2}$, we denote the subgroup of $\mathfrak{G}(k+1 / 2)$ consisting of all pairs (γ, φ), where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\gamma \in \Gamma$ and $\varphi(z)=\chi(d) j(\gamma, z)^{2 k+1}$. We denote by $S(k+1 / 2, N, \chi)$ the space of all complex-valued holomorphic functions f on $\mathscr{S}_{\varepsilon}$ which satisfy $f \mid \xi=f$ for all $\xi \in \Delta$ and which are holomorphic and vanish at all cusps of Γ. When $\mu=2$, we define the Kohnen subspace $S(k+1 / 2$, $N, \chi)_{K}$ as follows:

$$
S\left(k+\frac{1}{2}, N, \chi\right)_{K}=\left\{\begin{array}{l}
S\left(k+\frac{1}{2}, N, \chi\right) \ni f(z)=\sum_{n=1}^{\infty} a(n) e(n z) ; \\
a(n)=0 \text { for } \varepsilon(-1)^{k} n \equiv 2,3(\bmod 4)
\end{array}\right\}
$$

Here, $\varepsilon=\chi_{2}(-1)$ where χ_{2} is the 2 -primary component of χ.
Let $\xi \in \mathscr{G}(k+1 / 2)$. If Δ and $\xi^{-1} \Delta \xi$ are commensurable, we define a linear operator $[\Delta \xi \Delta]_{k+1 / 2}$ on $S(k+1 / 2, N, \chi)$ by : $f\left|[\Delta \xi \Delta]_{k+1 / 2}=\sum_{\eta} f\right| \eta$, where η runs over a system of representatives for $\Delta \backslash \Delta \xi \Delta$.

Then for a natural number n with $(n, N)=1$, we put

$$
\tilde{T}\left(n^{2}\right)=\tilde{T}_{k+1 / 2, N, x}\left(n^{2}\right)=n^{k-3 / 2} \sum_{a d=n} a\left[\Delta\left(\left(\begin{array}{cc}
a^{2} & 0 \\
0 & d^{2}
\end{array}\right),(d / a)^{k+1 / 2}\right) \Delta\right]_{k+1 / 2}
$$

where the sum is extended over all pairs of integers (a, d) such that $a, d>0$, $a \mid d$ and $a d=n$. Then $S(k+1 / 2, N, \chi)_{K}$ is invariant under the action of the operators $\tilde{T}\left(n^{2}\right)$. Hence, we can consider the traces of those operators on $S(k+1 / 2, N, \chi)_{k}$.

From now on until the end of this paper, we assume the following:
Assumption. ψ is a non-trivial primitive character such that $\psi^{2}=1$ and the conductor of ψ, say L, is odd and $L^{2} \mid N$.

We fix the notations L and ψ in the above assumption. Furthermore, we decompose N as follows: $N=L_{0} L_{1}, L_{1}=2^{\operatorname{ord}_{2}(N)} L_{2}$, where $L_{0}>0, L_{1}>0$, $L_{0} \mid L^{\infty}$, and $\left(L_{1}, L\right)=1$. From this assumption and the fact $\chi^{2}=1$, it follows
that the conductor of χ divides (N / L). From [2, Lemma 3.6], we can consider the linear operator R_{ψ} on $S(k+1 / 2, N, \chi): f(z)=\sum_{n=1}^{\infty} \alpha(n) \boldsymbol{e}(n z) \mapsto$ $f \mid R_{\psi}(z):=\sum_{n=1}^{\infty} \psi(n) \alpha(n) \boldsymbol{e}(n z)$. We call R_{ψ} the twisting operator for ψ.

Statement of results. We use the above notations and also for a prime divisor p of $N, \operatorname{ord}_{p}(N)=\nu_{p}=\nu$ or μ, according as p is odd or $p=2$. Put $M=$ $2^{-\mu} N$ and $N_{0}=\prod_{q \mid L} q^{2[(\nu-1) / 2]+1}$. Moreover we use the following notations:

For any odd prime number p and any integers a, b ($0 \leq a \leq \nu / 2$), we put

$$
\lambda(p, b ; a)= \begin{cases}1, & \text { if } a=0 \\ 1+\left(\frac{-b}{p}\right), & \text { if } 1 \leq a \leq[(\nu-1) / 2] \\ \chi_{p}(-b), & \text { if } \nu \text { is even and } a=\nu / 2\end{cases}
$$

where χ_{p} is the p-primary component of χ. For any integer b and any square divisor c of M, we put

$$
\Lambda(b ; c):=\prod_{p \mid M} \lambda\left(p, b ; \operatorname{ord}_{p}(c) / 2\right) .
$$

Theorem. Let N be a positive integer such that $2 \leq \mu=\operatorname{ord}_{2}(N) \leq 4$, and χ an even character modulo N such that $\chi^{2}=1$ and the conductor of χ is divisible by 8 if $\mu=4$. Let n be any positive integer such that $(n, N)=1$. Then we have the following trace relations (1)-(2).
(1) Suppose that $k \geq 2$. Then we have:
$\operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) \mid S(k+1 / 2, N, \chi)\right)$

$$
=\left(\frac{-1}{L}\right)^{k} \chi_{L_{0}}(n) \chi_{L_{1}}(-L) \sum_{N_{1}} \Lambda\left(L n ; N_{1}\right) \operatorname{tr}\left(\left[W\left(N_{0} N_{1}\right)\right] T(n) \mid S\left(2 k, 2^{\mu-1} N_{0} N_{1} N_{2}\right)\right)
$$

(2) Suppose that $k \geq 2$ and $N=4 M$. Then we have:

$$
\operatorname{tr}\left(R_{\Downarrow} \tilde{T}\left(n^{2}\right) \mid S(k+1 / 2, N, \chi)_{K}\right)
$$

$$
=\left(\frac{-1}{L}\right)^{k} \chi_{L_{0}}(n) \chi_{L_{1}}(-L) \sum_{N_{1}} \Lambda\left(L n ; N_{1}\right) \operatorname{tr}\left(\left[W\left(N_{0} N_{1}\right)\right] T(n) \mid S\left(2 k, N_{0} N_{1} N_{2}\right)\right)
$$

Here, N_{1} in the sum $\sum_{N_{1}}$ runs over all square divisors of L_{2} and $N_{2}=$ $L_{2} \prod_{p\left|N_{1}\right|}\left|L_{2}\right|_{p} . \quad \chi_{L_{0}}\left(\right.$ resp. $\left.\chi_{L_{1}}\right)$ is the $L_{0}\left(\right.$ resp. $\left.L_{1}\right)$-primary component of χ.

Remark. We also have some similar relations for the case of $k=1$, or $\mu \geq 5$, or etc. (cf. [5] § 4).

Supplementary remarks. In the case of the twisting operator, we have the same phenomena as in the case of the Hecke operators (cf. [3], [4]).
(1) When the 2 -order of $N\left(=\operatorname{ord}_{2}(N)=\mu\right)$ is small (for example $\left.\mu \leq 3\right)$, cusp forms of half-integral weight $k+1 / 2$ of level N correspond to those of integral weight $2 k$ of level $N / 2$.
(2) On the other hand, when μ is big (for example $\mu \geq 8$), cusp forms of weight $k+1 / 2$ of level N correspond to those of weight $2 k$ of level at most $N / 4$.

We do not know why this difference occurs.

References

[1] T. Miyake: Modular Forms. Springer (1989).
[2] G. Shimura: On modular forms of half integral weight. Ann. of Math., 97, 440481 (1973).
[3] M. Ueda: The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators. J. Math. Kyoto Univ., 28, 505-555 (1988).
[4] -: Supplement to the decomposition of the spaces of cusp forms of halfintegral weight and trace formula of Hecke operators (to appear in J. Math. Kyoto Univ.) .
[5] -: The trace formulae of twisting operators on the spaces of cusp forms of half-integral weight and some trace relations (to appear in Japanese J. of Math.).

