4. Estimates of Harmonic Measures Associated with Degenerate Laplacian on Strictly Pseudoconvex Domains

By Hitoshi ARAI

Mathematical Institute, Tohoku University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1990)

Let D be a smooth bounded strictly pseudoconvex domain in C^n , and let λ be a C^{∞} strictly plurisubharmonic function on a neighborhood U of the closure \overline{D} of D satisfying that $D = \{z \in U : \lambda(z) < 0\}$, and $d\lambda \neq 0$ on the boundary ∂D of D. The purpose of the present paper is to announce our results on harmonic measures associated with the Laplace-Beltrami operator L of the complete Kähler metric $-\partial \overline{\partial} \log(-\lambda)$ on D. Detailed proofs will appear in a later paper.

Our main results are the following two theorems:

Theorem 1. Let $z \in D$, and let $d\omega^z$ be the L-harmonic measure associated with L and D, evaluated at z, that is, $d\omega^z$ is a probability Borel measure on ∂D such that for any $f \in C(\partial D)$ the function $u(z) = \int f d\omega^z$ is the unique solution of Lu=0 in D which is continuous in \overline{D} and satisfies that u=f on ∂D . Then the measure $d\omega^z$ and the induced Euclidean measure $d\sigma$ on ∂D are mutually absolutely continuous. Furthermore, there exists a function k_z on ∂D such that $d\omega^z(\zeta) = k_z(\zeta) d\sigma(\zeta)$, $k_z \in L^{\infty}(d\sigma)$ and $k_z^{-1} \in L^{\infty}(d\sigma)$.

From the point of view of several complex variables, the function $k_z(\zeta)$ $(z \in D, \zeta \in \partial D)$ can be regarded as an analogue of the Poisson-Szegö kernel for the strictly pseudoconvex domain D. By this theorem and some results given later we obtain

Theorem 2. Let u be an L-harmonic function on D. Let E be a subset of ∂D . If u is admissibly bounded at every point of $\zeta \in E$ in the sense of Stein [11], then u has an admissible limit at d σ -almost every point of E. (See [11] for the definition of admissible limits.)

Since real and imaginary parts of holomorphic functions are *L*-har monic, Theorem 2 generalizes the local Fatou theorem for holomorphic functions (Stein [11, Theorem 12 (a) \rightarrow (b)]) to *L*-harmonic functions.

§1. On the proof of Theorem 1. In his paper [1], Ancona introduced the concept " Φ -chains", and stated in terms of Φ -chains a Harnack principle at infinity (see [1, Theorem 5']). By modifying and localizing his theory, we can gain some boundary Harnack principles stated in terms of non-isotropic balls in ∂D and the normal vector field to ∂D . The proofs of the theorems involve the principles. Moreover, we need an estimate of *L*harmonic measures. To describe it, let us recall some definitions and a basic fact: Let $D_0 \subset C^n$ be a domain contains ∂D such that for every $z \in D_0$ there exists the unique point b(z) of ∂D with $|b(z)-z|=\delta(z)$, where $\delta(z)$ is the Euclidean distance between z and ∂D . For $z \in D \cap D_0$, let π_z be the orthogonal projection of the Euclidean space C^n onto the complex vector space spanned by the inward unit normal vector $\nu_{b(z)}$ to ∂D at b(z), and let $\pi_z^{\perp} := I - \pi_z$, where I is the identity map. Then it is obvious that the nonisotropic ball of radius r > 0, centered at $\zeta \in \partial D$ is equivalent to the following set:

$$Q(\zeta, r) := \{ w \in \partial D : |\pi_{\zeta}(\zeta - w)| < r, |\pi_{\zeta}^{\perp}(\zeta - w)|^2 < r \}.$$

From now on we denote by g the metric $-\partial \bar{\partial} \log (-\lambda)$.

The following proposition is an analogue of the well known estimate of a uniformly elliptic harmonic measure:

Proposition 1. For $\zeta \in \partial D$ and r > 0, let $\zeta(r) = \zeta + r\nu_{\zeta}$. Then there exists a constant c > 0 depending only on D and g such that

$$\omega^{\zeta(r)}(Q(\zeta,r))\geq c.$$

We are now in a position to prove Theorem 1: It is proved by the Harnack principles, Proposition 1, its localization, a theorem of Malliavin ([8, Theorem 2.1]) and a modification of Saks [9, Theorem 15.7].

§ 2. On the proof of Theorem 2. Let us recall the definition of admissible domains introduced by Stein [11]: For $\alpha > 1$ and $\zeta \in \partial D$, let

 $A_{\alpha}(\zeta) := \{ z \in D \cap D_0 \colon |\pi_{\zeta}(z-\zeta)| < \alpha \delta_{\zeta}(z), |z-\zeta|^2 < \alpha \delta_{\zeta}(z) \},$ where $\delta_{\zeta}(z) = \min \{ \delta(z), \operatorname{dist}(z, \operatorname{T}_{\zeta}(\partial D) \}.$

We will characterize the admissible domains by polydiscs: For $z \in D \cap D_0$ and for a small number c > 0, let

 $P_c(z):=\!\{w\in D: |\pi_z(z-w)|\!<\!c\delta(z),\, |\pi_z^\perp(z-w)|^2\!<\!c\delta(z)\},$ and for $\zeta\in\partial D,$ let

 $\Gamma(\zeta; c) := \cup \{ P_c(\zeta + r\nu_{\zeta}) : r > 0 \} \cap D_0.$

Our characterization is as follows:

Proposition 2. We can take an open set $D_i \subset C^n$ satisfying

- (i) $\partial D \subset D_1 \subset D_0$;
- (ii) For $\alpha > 1$, there exist two positive constants $c(\alpha)$ and $C(\alpha)$ with

$$\Gamma(\zeta; c(\alpha)) \cap D_1 \subset A_{\alpha}(\zeta) \cap D_1 \subset \Gamma(\zeta; C(\alpha)) \cap D_1, \qquad \zeta \in \partial D$$

Theorem 2 is proved in the same spirit as the arguments given in [3] except using admissible domains introduced by Stein ([11]) instead of one defined in [3]. The proof is based on Theorem 1, Propositions 1, 2 and that aspect of the abstract potential theory which is related to the fine convergence.

§ 3. Generalizations of theorems. Let α be a positive constant. For $\Phi \in C^{0}(\overline{D}) \cap C^{\infty}(D)$ with $\Phi > 0$ in the intersection of \overline{D} and a neighborhood of ∂D , let

$$g(\alpha, \Phi) := -\alpha \partial \bar{\partial} \log (-\lambda \cdot \Phi).$$

Suppose that $g(\alpha, \Phi)$ is a complete Kähler metric of D and that its Laplace-Beltrami operator $L_{g(\alpha, \Phi)}$ is weakly coercive near ∂D in the sense of [1]. Theorem 1 is generalized as follows:

Theorem 3. Suppose the Green's function G of $L_{g(\alpha, \phi)}$ satisfies that for $z \in D$,

(G) $C^{-1}\delta(w)^n \leq G(z,w) \leq C\delta(w)^n,$

for all $w \in D$ near ∂D , where C is a positive constant independent of points w. Then $d\sigma$ and $L_{q(a,\phi)}$ -harmonic measures are mutually absolutely continuous.

A typical example of metrics in Theorem 3 is the metric g (see [6], [7] and [8]). Another example is the Bergman metric of a certain strictly pseudoconvex domain (see [6], [7], [8] and [10]).

Theorem 2 is generalized to the same metric as in Theorem 3.

Remark. There are many results on absolute continuity of uniform elliptic harmonic measures (cf. [4], [5], [8]). Nevertheless, we can not use them, because L is degenerate at ∂D .

Acknowledgements. I would like to thank Professor Elias M. Stein and Satoru Igari for their interest and suggestions concerning this work.

References

- A. Ancona: Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann. of Math., 125, 495-539 (1987).
- [2] M. T. Anderson and R. Schoen: Positive harmonic functions on complete manifolds of negative curvature. ibid., 121, 429-539 (1985).
- [3] H. Arai: Boundary behavior of functions on complete manifolds of negative curvature. Tohoku Math. J., 41, 307-319 (1989).
- [4] B. Dahlberg: On estimates of harmonic measure. Arch. Rat. Mech. Anal., 65, 272-288 (1977).
- [5] E. Fabes, D. Jerison, and C. Kenig: Necessary and sufficient conditions for absolute continuity of elliptic harmonic measure. Ann. of Math., 119, 121–141 (1984).
- [6] C. Fefferman: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math., 26, 1-65 (1974).
- [7] P. F. Klembeck: Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded pseudoconvex sets. Indiana Univ. Math. J., 27, 275-282 (1978).
- [8] P. Malliavin: Fonctions de Green d'un ouvert strictement pseudo-convexe et classe de Nevanlinna. C. R. Acad. Sci. Paris, 278, 141–144 (1974).
- [9] S. Saks: Theory of the Integral. 2nd ed., Hafner Publ. Co., New York (1937).
- [10] T. Sasaki: On the Green function of a complete Riemannian or Kähler manifold with asymptotically negative constant curvature and applications. Advanced Studies in Pure Math., 3, 387-421 (1984).
- [11] E. M. Stein: Boundary Behavior of Holomorphic Functions of Several Complex Variables. Princeton Univ. Press (1972).