34. Construction of Certain Maximal p-ramified Extensions over Cyclotomic Fields

By Humio Ichimura
Department of Mathematics, Yokohama City University

(Communicated by Shokichi Ifanaga, m. J. a., June 12, 1990)
§ 1. Introduction. Let p and m be, respectively, a fixed odd prime number and a fixed integer with $(p, m)=1$ and let $k=\boldsymbol{Q}(\cos (2 \pi / m))$ and $K_{\infty}=k\left(\mu_{p^{\infty}}\right)$. Denote by Ω_{p} the maximal pro-p abelian extension over K_{∞} unramified outside p. Its odd part Ω_{p}^{-}contains the field

$$
C=K_{\infty}\left(\varepsilon^{1 / p^{\infty}} \mid \text { all circular units } \varepsilon \text { of } K_{\infty}\right) .
$$

The extension Ω_{p}^{-} / C is of very delicate nature, and for example, when $k=\boldsymbol{Q}$, it is closely related to the Vandiver conjecture at p. We shall give a system of generators for the extension Ω_{p}^{-} / C (except for its " ω_{p}-component") by using the theory of special units of F. Thaine [3].
§ 2. Statement of the results. Fix an even Z_{p}-valued character χ of $\Delta_{p}=\operatorname{Gal}\left(k\left(\mu_{p}\right) / k\right)$, and let χ^{\prime} be the odd character associated to χ, i.e., $\chi^{\prime}=$ $\omega_{p} \cdot \chi^{-1}$. Here, ω_{p} is the Teichmüller character of Δ_{p}. Since the Galois group Δ_{p} acts on the pro-p abelian groups $\operatorname{Gal}\left(\Omega_{p}^{-} / K_{\infty}\right)$ and $\operatorname{Gal}\left(C / K_{\infty}\right)$ in the usual manner, we can decompose them by the Δ_{p}-action. Let $\Omega_{p}\left(\chi^{\prime}\right)$ be the maximal intermediate field of $\Omega_{p}^{-} / K_{\infty}$ fixed by the ψ-components $\operatorname{Gal}\left(\Omega_{p}^{-} / K_{\infty}\right)(\psi)$ for all odd Z_{p}-valued characters ψ of Δ_{p} except χ^{\prime}. Define the intermediate field $C\left(\chi^{\prime}\right)$ of C / K_{∞} similarly.
To give a system of generators of the extension $\Omega_{p}\left(\chi^{\prime}\right) / C\left(\chi^{\prime}\right)$, we have to recall from [2] and introduce some notations. For a while, we fix a natural number n and let $K_{n}=k\left(\mu_{p^{n+1}}\right)$. For an abelian group A and an integer N, we abbreviate the quotient $A / N A$ as A / N. Let M be any power of p. Regarding $(\boldsymbol{Z} / M)\left[\Delta_{p}\right]$ as a subring of $(\boldsymbol{Z} / M)\left[\operatorname{Gal}\left(K_{n} / \boldsymbol{Q}\right)\right]$, we decompose $(\boldsymbol{Z} / M)\left[\operatorname{Gal}\left(K_{n} / \boldsymbol{Q}\right)\right]$ by the Δ_{p}-action. Denote its χ-component by $\Lambda_{n, \chi, u}$. Let E_{n} and C_{n} be, respectively, the group of units and that of circular units of K_{n}. By a theorem on units in a Galois extension and that $\left[E_{n}: C_{n}\right]<\infty$, we see that there exists a Galois stable submodule C_{n}^{\prime} of C_{n} such that C_{n}^{\prime} is cyclic over the group ring $Z\left[\operatorname{Gal}\left(K_{n} / Q\right)\right]$ and $\left[E_{n}: C_{n}^{\prime}\right]<\infty$. In the following, assume that $\chi \neq \operatorname{trivial}\left(\chi^{\prime} \neq \omega_{p}\right)$. Since $\chi \neq$ trivial, the χ-component $\left(C_{n}^{\prime} / M\right)(\chi)$ is free and cyclic over $\Lambda_{n, \chi, M}$ for any M. Let $p^{\delta(n, x)}$ be the exponent of $\left(E_{n} / C_{n}^{\prime}\right)(p)(\chi)$, and we abbreviate $\Lambda_{n, \chi, p^{28(n, x)}}$ as $\Lambda_{n, \chi}$. For an integer i, we denote by ζ_{i} a fixed primitive i-th root of unity. Let

$$
\xi_{n}(1)=\prod_{i \mid m p^{n+1}}\left(\left(1-\zeta_{i}\right)\left(1-\zeta_{i}^{-1}\right)\right)^{a_{i}}
$$

be a fixed generator of $\left(C_{n}^{\prime} / p^{28(n, x)}\right)(\chi)$ over the group ring $\Lambda_{n, \chi}$, here α_{i} is an element of $\Lambda_{n, x}$. For a prime number l with $l \equiv 1\left(\bmod m p^{n+1}\right)$, define an
element $\xi_{n}(l)$ of $K_{n}\left(\mu_{l}\right)$ by

$$
\xi_{n}(l)=\prod_{i \mid m p^{n+1}}\left(\left(1-\zeta_{l} \cdot \zeta_{i}\right)\left(1-\zeta_{1} \cdot \zeta_{i}^{-1}\right)\right)^{a_{i}}
$$

Let N_{l} be the norm map from $K_{n}\left(\mu_{l}\right)$ to K_{n}. Since $l \equiv 1\left(\bmod m p^{n+1}\right)$, we see that $N_{l} \xi(l)=1$. Hence, there exists an element $a_{n}(l)$ of $K_{n}\left(\mu_{l}\right)$ such that $\xi_{n}(l)=a_{n}(l)^{\sigma_{l}^{-1}}, \sigma_{l}$ being a fixed generator of $\operatorname{Gal}\left(K_{n}\left(\mu_{l}\right) / K_{n}\right)$. Put $\kappa_{n}(l)=$ $N_{l} a_{n}(l)$, which is defined modulo $\left(K_{n}^{\times}\right)^{l-1}$. As in [3], [1] and [2], the elements $\kappa_{n}(l)$ play an important role. Consider prime numbers l such that $l \equiv 1$ $\left(\bmod m p^{n+1}\right)$ and $l \equiv 1\left(\bmod p^{28(n, x)}\right)$. Then, regarding $\kappa_{n}(l)$ as an element of $K_{n}^{\times} / p^{28(n, x)}$, we denote by $\kappa_{n}^{\chi}(l)$ its χ-component. Also, call $\kappa_{n}^{\chi}(1)$ the χ-component of $\xi_{n}(1)\left(\in K_{n}^{\times} / p^{28(n, x)}\right)$. Although we want to construct p-ramified extensions over $C\left(\chi^{\prime}\right)$ by using elements of the form $\kappa_{n}^{\chi}(l)^{1 / p^{\delta(n, x}}$, we have to impose some conditions on l to control ramifications. So, let $L_{n, x}$ be the set of all prime numbers l with $l \equiv 1\left(\bmod m p^{n+1}\right), l \equiv 1\left(\bmod p^{28(n, x)}\right)$ and such that l splits completely in $K_{n}\left(\kappa_{n}^{\chi}(1)^{\left.1 / p^{\delta(n, x)}\right)}\right.$. Then, our result is

Theorem. If $\chi^{\prime} \neq \omega_{p}$, then

$$
\Omega_{p}\left(\chi^{\prime}\right)=C\left(\chi^{\prime}\right)\left(\left(\sigma \cdot \kappa_{n}^{\chi}(l)\right)^{1 / p^{p(n, \chi)}} \mid \forall n \geq 1, \forall l \in L_{n, \chi}, \forall \sigma \in \operatorname{Gal}\left(K_{n} / Q\right)\right) .
$$

Remark. When $\chi^{\prime}=\omega_{p}$, it is known that $\Omega_{p}\left(\omega_{p}\right)=C\left(\omega_{p}\right)$ if and only if the Iwasawa λ invariant of the cyclotomic Z_{p}-extension over $k=\boldsymbol{Q}(\cos (2 \pi / m))$ is zero. In particular, when $k=\boldsymbol{Q}, \Omega_{p}\left(\omega_{p}\right)=C\left(\omega_{p}\right)$.
§3. Proof of Theorem. The following lemma gives a prime ideal decomposition of the principal ideal $\left(\kappa_{n}^{x}(l)\right)$.

Lemma 1 ([2, Lemma 3]). Let l be a prime number with $l \equiv 1(\bmod$ $\left.m p^{n+1}\right)$ and λ be a prime ideal of K_{n} over l. Then, there exists a $\operatorname{Gal}\left(K_{n} / Q\right)$ equivariant isomorphism φ_{λ} of the multiplicative group $\left(O_{K_{n}} / l\right)^{\times}$onto the abelian $\operatorname{group}(Z /(l-1))\left[\operatorname{Gal}\left(K_{n} / Q\right)\right]$ such that

$$
\left(\kappa_{n}(l)\right) \equiv \varphi_{\lambda}\left(\kappa_{n}(1)\right) \cdot \lambda \bmod (l-1) I
$$

here I is the free abelian group of all ideals of K_{n}, and elements of the group ring act on I multiplicatively.

Proof of the inclusion $\supset:$ For a prime number l in $L_{n, \chi}, \kappa_{n}^{\chi}(1)$ is a $p^{s(n, x)}$-th power in $\left(O_{K_{n}} / l\right)^{\times}$. Therefore, by Lemma 1, there exists an ideal \mathfrak{a} of K_{n} such that $\left(\kappa_{n}^{\chi}(l)\right)=\mathfrak{a}^{p \delta(n, x)}$. So, we obtain the inclusion \supset.

To prove the reverse inclusion, it suffices to show that the system $\left\{\kappa_{n}^{\chi}(l) \mid n \geq 1, l \in L_{n, x}\right\}$ is "ample" in the following sense. Let V be the submodule of $K_{\infty}^{\times} \otimes\left(\boldsymbol{Q}_{p} / Z_{p}\right)$ such that

$$
\Omega_{p}^{-}=K_{\infty}\left(a^{1 / p^{n}} \mid \text { all } a \otimes p^{-n} \in V\right)
$$

The following exact sequence is well known (see e.g. [4]) :

$$
1 \longrightarrow\left(\cup E_{n}\right) \otimes\left(\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \longrightarrow V \xrightarrow{f} \longrightarrow
$$

here A_{n} is the p-part of the ideal class group of K_{n} and A_{n}^{+}is its even part. Recall that the homomorphism f is defined as follows: For $a \otimes p^{-n} \in V$, the extension $K_{\infty}\left(a^{1 / p^{n}}\right) / K_{\infty}$ is unramified outside p. Then, since all primes of k above p are infinitely ramified in K_{∞}, there exists an ideal \mathfrak{a} of K_{s} such that $(a)_{K_{s}}=\mathfrak{a}^{p n}$ for some ideal \mathfrak{a} of K_{s} for sufficiently large s. We define $f\left(a \otimes p^{-n}\right)$ to be the class of \mathfrak{a}.

Since the group C_{n} of circular units of K_{n} is of finite index in E_{n}, we obtain the following exact sequence by decomposing ($*$) by the Δ_{p}-action,

$$
1 \longrightarrow\left(\left(\cup C_{n}\right) \otimes\left(\boldsymbol{Q}_{p} / Z_{p}\right)\right)(\chi) \longrightarrow V(\chi) \longrightarrow \lim _{n}(\chi) \longrightarrow 1
$$

Since $\Omega_{p}\left(\chi^{\prime}\right)$ is generated over K_{∞} by $V(\chi)$, and so is $C\left(\chi^{\prime}\right)$ by $\left(\left(\cup C_{n}\right) \otimes\right.$ $\left.\left(\boldsymbol{Q}_{p} / Z_{p}\right)\right)(\chi)$, it suffices to prove that for each $n \geq 1$ and for each $c \in A_{n}(\chi)$, there exist $l \in L_{n, \mathrm{x}}$ and $\alpha \in \boldsymbol{Z}\left[\operatorname{Gal}\left(K_{n} / Q\right)\right]$ such that

$$
f\left(\left(\alpha \cdot \kappa_{n}^{\chi}(l)\right) \otimes p^{-\delta(n, \alpha)}\right)=c .
$$

The proof of the inclusion \subset : Fix a natural number n. Since $\left(C_{n}^{\prime} / p^{2 s(n, x)}\right)(\chi)$ is free over the group ring $\Lambda_{n, x}$ with a generator $\kappa_{n}^{\chi}(1)$, we identify $\left(C_{n}^{\prime} / p^{2 \delta(n, x)}\right)(\chi)$ with $\Lambda_{n, \chi}$ by $\kappa_{n}^{\chi}(1) \leftrightarrow 1$. Define a Galois equivariant homomorphism ψ by

$$
\begin{aligned}
\psi:\left(E_{n} / p^{28(n, x)}\right)(\chi) \longrightarrow\left(C_{n}^{\prime} / p^{2 \delta(n, x)}\right) \\
\varepsilon \longrightarrow \varepsilon^{p(n, x)}
\end{aligned}
$$

Lemma 2 ([2, Theorem 5]). For each ideal class $\mathfrak{c} \in A_{n}(\chi)$, there exist infinitely many prime ideals $\lambda \in \mathrm{C}$ of degree one satisfying
(1) $l=\lambda \cap \boldsymbol{Q} \equiv 1\left(\bmod m p^{n+1}, \bmod p^{28(n, x)}\right)$,
(2) $\left.\alpha \cdot \varphi_{2}\right|_{E_{n}} \equiv \psi\left(\bmod p^{2 \delta(n, x)}\right)$ for some $\alpha \in \Lambda_{n, \chi}$,
(3) $\left.\varphi_{\lambda}\right|_{E_{n}} \equiv \beta \cdot \psi\left(\bmod p^{2 \delta(n, x)}\right)$ for some $\beta \in \Lambda_{n, \chi}$,
here, φ_{λ} is the isomorphism in Lemma 1.
Now, fix an ideal class cin $A_{n}(\chi)$, and take a prime ideal λ in c satisfying the conditions (1), (2) and (3) in Lemma 2. Then, by (3) and the definition of ψ, we see that

$$
\varphi_{\lambda}\left(\kappa_{n}^{\chi}(1)\right) \equiv \beta \cdot \psi\left(\kappa_{n}^{\chi}(1)\right) \bmod p^{2 \delta(n, x)} \equiv 0 \bmod p^{\delta(n, z)} .
$$

This and (1) imply that $l=\lambda \cap \boldsymbol{Q} \in L_{n, x} . \quad$ By (2) and Lemma 1, we see that

$$
\left(\alpha \cdot \kappa_{n}^{\chi}(l)\right) \equiv \alpha \cdot \varphi_{\lambda}\left(\kappa_{n}^{\chi}(1)\right) \cdot \lambda \bmod p^{28(n, x)} I \equiv \psi\left(\kappa_{n}^{\chi}(1)\right) \cdot \lambda \bmod p^{2 \delta(n, x)} I .
$$

Hence, by the definition of ψ and the fact that the exponent of $A_{n}(\chi)$ is smaller than or equal to $p^{\delta(n, x)}([1])$, we obtain $f\left(\left(\alpha \cdot \kappa_{n}^{\chi}(l)\right) \otimes p^{-\delta(n, x)}\right)=c$. This completes the proof of Theorem.

References

[1] K. Rubin: Global units and ideal class groups. Inv. Math., 89, 511-526 (1987).
[2] -: The main conjecture. Appendix to: Cyclotomic Fields by S. Lang, Sprin-ger-Verlag, New York (1989).
[3] F. Thaine: On the ideal class groups of real abelian number fields. Ann. of Math., 128, 1-18 (1988).
[4] L. C. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York (1982).

