34. Construction of Certain Maximal p-ramified Extensions over Cyclotomic Fields

By Humio ICHIMURA

Department of Mathematics, Yokohama City University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

§1. Introduction. Let p and m be, respectively, a fixed odd prime number and a fixed integer with (p, m)=1 and let $k=Q(\cos(2\pi/m))$ and $K_{\infty}=k(\mu_{p^{\infty}})$. Denote by Ω_p the maximal pro-p abelian extension over K_{∞} unramified outside p. Its odd part Ω_p^- contains the field

 $C = K_{\infty}(\varepsilon^{1/p^{\infty}} | \text{ all circular units } \varepsilon \text{ of } K_{\infty}).$

The extension Ω_p^-/C is of very delicate nature, and for example, when k=Q, it is closely related to the Vandiver conjecture at p. We shall give a system of generators for the extension Ω_p^-/C (except for its " ω_p -component") by using the theory of special units of F. Thaine [3].

§ 2. Statement of the results. Fix an even Z_p -valued character \mathfrak{X} of $\mathcal{A}_p = \operatorname{Gal}(k(\mu_p)/k)$, and let \mathfrak{X}' be the odd character associated to \mathfrak{X} , i.e., $\mathfrak{X}' = \omega_p \cdot \mathfrak{X}^{-1}$. Here, ω_p is the Teichmüller character of \mathcal{A}_p . Since the Galois group \mathcal{A}_p acts on the pro-p abelian groups $\operatorname{Gal}(\Omega_p^-/K_\infty)$ and $\operatorname{Gal}(C/K_\infty)$ in the usual manner, we can decompose them by the \mathcal{A}_p -action. Let $\Omega_p(\mathfrak{X}')$ be the maximal intermediate field of Ω_p^-/K_∞ fixed by the ψ -components $\operatorname{Gal}(\Omega_p^-/K_\infty)(\psi)$ for all odd Z_p -valued characters ψ of \mathcal{A}_p except \mathfrak{X}' . Define the intermediate field $C(\mathfrak{X}')$ of C/K_∞ similarly.

To give a system of generators of the extension $\Omega_p(X')/C(X')$, we have to recall from [2] and introduce some notations. For a while, we fix a natural number n and let $K_n = k(\mu_{p^{n+1}})$. For an abelian group A and an integer N, we abbreviate the quotient A/NA as A/N. Let M be any power of p. Regarding $(\mathbb{Z}/M)[\Delta_p]$ as a subring of $(\mathbb{Z}/M)[\operatorname{Gal}(K_n/Q)]$, we decompose $(\mathbb{Z}/M)[\operatorname{Gal}(K_n/Q)]$ by the Δ_p -action. Denote its χ -component by $\Lambda_{n,\chi,M}$. Let E_n and C_n be, respectively, the group of units and that of circular units of K_n . By a theorem on units in a Galois extension and that $[E_n : C_n] < \infty$, we see that there exists a Galois stable submodule C'_n of C_n such that C'_n is cyclic over the group ring $\mathbb{Z}[\operatorname{Gal}(K_n/Q)]$ and $[E_n : C'_n] < \infty$. In the following, assume that $\chi \neq \operatorname{trivial}(\chi' \neq \omega_p)$. Since $\chi \neq \operatorname{trivial}$, the χ -component $(C'_n/M)(\chi)$ is free and cyclic over $\Lambda_{n,\chi,M}$ for any M. Let $p^{\delta(n,\chi)}$ be the exponent of $(E_n/C'_n)(p)(\chi)$, and we abbreviate $\Lambda_{n,\chi,p^{\delta\delta(n,\chi)}}$ as $\Lambda_{n,\chi}$. For an integer i, we denote by ζ_i a fixed primitive i-th root of unity. Let

$$\xi_n(1) = \prod_{i \mid mp^{n+1}} ((1 - \zeta_i) (1 - \zeta_i^{-1}))^{a_i}$$

be a fixed generator of $(C'_n/p^{2\delta(n,\chi)})(\chi)$ over the group ring $\Lambda_{n,\chi}$, here a_i is an element of $\Lambda_{n,\chi}$. For a prime number l with $l \equiv 1 \pmod{mp^{n+1}}$, define an

element $\xi_n(l)$ of $K_n(\mu_l)$ by

 $\xi_n(l) = \prod_{i \mid mp^{n+1}} ((1 - \zeta_l \cdot \zeta_i) (1 - \zeta_l \cdot \zeta_i^{-1}))^{a_i}.$

Let N_l be the norm map from $K_n(\mu_l)$ to K_n . Since $l \equiv 1 \pmod{mp^{n+1}}$, we see that $N_l \xi(l) = 1$. Hence, there exists an element $a_n(l)$ of $K_n(\mu_l)$ such that $\xi_n(l) = a_n(l)^{\sigma_l-1}$, σ_l being a fixed generator of $\operatorname{Gal}(K_n(\mu_l)/K_n)$. Put $\kappa_n(l) =$ $N_l a_n(l)$, which is defined modulo $(K_n^{\times})^{l-1}$. As in [3], [1] and [2], the elements $\kappa_n(l)$ play an important role. Consider prime numbers l such that $l \equiv 1$ (mod mp^{n+1}) and $l \equiv 1 \pmod{p^{2\delta(n, \chi)}}$. Then, regarding $\kappa_n(l)$ as an element of $K_n^{\times}/p^{2\delta(n, \chi)}$, we denote by $\kappa_n^{\chi}(l)$ its χ -component. Also, call $\kappa_n^{\chi}(1)$ the χ -component of $\xi_n(1) \ (\in K_n^{\times}/p^{2\delta(n, \chi)})$. Although we want to construct p-ramified extensions over $C(\chi')$ by using elements of the form $\kappa_n^{\chi}(l)^{1/p^{\delta(n, \chi)}}$, we have to impose some conditions on l to control ramifications. So, let $L_{n,\chi}$ be the set of all prime numbers l with $l \equiv 1 \pmod{mp^{n+1}}$, $l \equiv 1 \pmod{p^{2\delta(n, \chi)}}$ and such that l splits completely in $K_n(\kappa_n^{\chi}(1)^{1/p^{\delta(n, \chi)}})$. Then, our result is

Theorem. If $\chi' \neq \omega_p$, then

 $\Omega_p(\chi') = C(\chi')((\sigma \cdot \kappa_n^{\chi}(l))^{1/p^{\mathfrak{d}(n,\chi)}} | \forall n \ge 1, \forall l \in L_{n,\chi}, \forall \sigma \in \operatorname{Gal}(K_n/Q)).$

Remark. When $\chi' = \omega_p$, it is known that $\Omega_p(\omega_p) = C(\omega_p)$ if and only if the Iwasawa λ invariant of the cyclotomic Z_p -extension over $k = Q(\cos(2\pi/m))$ is zero. In particular, when k = Q, $\Omega_p(\omega_p) = C(\omega_p)$.

§ 3. Proof of Theorem. The following lemma gives a prime ideal decomposition of the principal ideal $(\kappa_n^2(l))$.

Lemma 1 ([2, Lemma 3]). Let l be a prime number with $l \equiv 1 \pmod{mp^{n+1}}$ and λ be a prime ideal of K_n over l. Then, there exists a $\operatorname{Gal}(K_n/Q)$ -equivariant isomorphism φ_{λ} of the multiplicative group $(O_{K_n}/l)^{\times}$ onto the abelian group $(Z/(l-1))[\operatorname{Gal}(K_n/Q)]$ such that

$$(\kappa_n(l)) \equiv \varphi_{\lambda}(\kappa_n(1)) \cdot \lambda \mod (l-1)I$$

here I is the free abelian group of all ideals of K_n , and elements of the group ring act on I multiplicatively.

Proof of the inclusion \supset : For a prime number l in $L_{n,x}$, $\kappa_n^{x}(1)$ is a $p^{\delta(n,x)}$ -th power in $(O_{K_n}/l)^{\times}$. Therefore, by Lemma 1, there exists an ideal α of K_n such that $(\kappa_n^{x}(l)) = \alpha^{p^{\delta(n,x)}}$. So, we obtain the inclusion \supset .

To prove the reverse inclusion, it suffices to show that the system $\{\kappa_n^z(l) \mid n \ge 1, l \in L_{n,z}\}$ is "ample" in the following sense. Let V be the submodule of $K_{\infty}^{\times} \otimes (Q_p/Z_p)$ such that

$$\Omega_p^- = K_{\infty}(a^{1/p^n} | \text{all } a \otimes p^{-n} \in V).$$

The following exact sequence is well known (see e.g. [4]):

$$1 \longrightarrow (\bigcup E_n) \otimes (Q_p/Z_p) \longrightarrow V \stackrel{f}{\longrightarrow} \varinjlim A_n^+ \longrightarrow 1(*),$$

here A_n is the *p*-part of the ideal class group of K_n and A_n^+ is its even part. Recall that the homomorphism f is defined as follows: For $a \otimes p^{-n} \in V$, the extension $K_{\infty}(a^{1/p^n})/K_{\infty}$ is unramified outside p. Then, since all primes of k above p are infinitely ramified in K_{∞} , there exists an ideal α of K_s such that $(a)_{K_s} = \alpha^{p^n}$ for some ideal α of K_s for sufficiently large s. We define $f(a \otimes p^{-n})$ to be the class of α . Since the group C_n of circular units of K_n is of finite index in E_n , we obtain the following exact sequence by decomposing (*) by the Δ_p -action,

 $1 \longrightarrow ((\cup C_n) \otimes (Q_p/Z_p))(\chi) \longrightarrow V(\chi) \longrightarrow \underline{\lim} A_n(\chi) \longrightarrow 1.$

Since $\Omega_p(\chi')$ is generated over K_{∞} by $V(\chi)$, and so is $C(\chi')$ by $((\cup C_n) \otimes (Q_p/Z_p))(\chi)$, it suffices to prove that for each $n \ge 1$ and for each $c \in A_n(\chi)$, there exist $l \in L_{n,\chi}$ and $\alpha \in \mathbb{Z}[\operatorname{Gal}(K_n/Q)]$ such that

 $f((\alpha \cdot \kappa_n^{\mathbf{z}}(l)) \otimes p^{-\delta(n,\mathbf{z})}) = \mathbf{c}.$

The proof of the inclusion \subset : Fix a natural number *n*. Since $(C'_n/p^{2\delta(n,\chi)})(\chi)$ is free over the group ring $\Lambda_{n,\chi}$ with a generator $\kappa_n^{\chi}(1)$, we identify $(C'_n/p^{2\delta(n,\chi)})(\chi)$ with $\Lambda_{n,\chi}$ by $\kappa_n^{\chi}(1) \leftrightarrow 1$. Define a Galois equivariant homomorphism ψ by

$$\psi: (E_n/p^{2\delta(n,\chi)})(\chi) \longrightarrow (C'_n/p^{2\delta(n,\chi)})(\chi) = \Lambda_{n,\chi}$$

$$\varepsilon \longrightarrow \varepsilon^{p^{\delta(n,\chi)}}.$$

Lemma 2 ([2, Theorem 5]). For each ideal class $c \in A_n(X)$, there exist infinitely many prime ideals $\lambda \in c$ of degree one satisfying

(1) $l=\lambda \cap Q \equiv 1 \pmod{mp^{n+1}}, \mod p^{2\delta(n,\lambda)}$

- (2) $\alpha \cdot \varphi_{\lambda}|_{E_n} \equiv \psi \pmod{p^{2\delta(n,\lambda)}}$ for some $\alpha \in \Lambda_{n,\lambda}$,
- (3) $\varphi_{\lambda}|_{E_n} \equiv \beta \cdot \psi \pmod{p^{2\delta(n,\lambda)}}$ for some $\beta \in \Lambda_{n,\lambda}$,

here, φ_{λ} is the isomorphism in Lemma 1.

Now, fix an ideal class c in $A_n(\chi)$, and take a prime ideal λ in c satisfying the conditions (1), (2) and (3) in Lemma 2. Then, by (3) and the definition of ψ , we see that

 $\varphi_{\mathfrak{s}}(\kappa_n^{\mathfrak{z}}(1)) \equiv \beta \cdot \psi(\kappa_n^{\mathfrak{z}}(1)) \mod p^{2\mathfrak{s}(n,\mathfrak{z})} \equiv 0 \mod p^{\mathfrak{s}(n,\mathfrak{z})}.$

This and (1) imply that $l = \lambda \cap Q \in L_{n,\chi}$. By (2) and Lemma 1, we see that $(\alpha \cdot \kappa_n^{\chi}(l)) \equiv \alpha \cdot \varphi_1(\kappa_n^{\chi}(1)) \cdot \lambda \mod p^{2\delta(n,\chi)} I \equiv \psi(\kappa_n^{\chi}(1)) \cdot \lambda \mod p^{2\delta(n,\chi)} I$.

Hence, by the definition of ψ and the fact that the exponent of $A_n(\chi)$ is smaller than or equal to $p^{\delta(n,\chi)}$ ([1]), we obtain $f((\alpha \cdot \kappa_n^{\chi}(l)) \otimes p^{-\delta(n,\chi)}) = c$. This completes the proof of Theorem.

References

- [1] K. Rubin: Global units and ideal class groups. Inv. Math., 89, 511-526 (1987).
- [2] ——: The main conjecture. Appendix to: Cyclotomic Fields by S. Lang, Springer-Verlag, New York (1989).
- [3] F. Thaine: On the ideal class groups of real abelian number fields. Ann. of Math., 128, 1-18 (1988).
- [4] L. C. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York (1982).