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33. Prime Producing Quadratic Polynomials and Class-number
One Problem for Real Quadratic Fields

By Masaki KOBAYASHI
Department of Mathematics, School of Science, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A,, May 14, 1990)

Let F=Q(/m) (m>0: square-free integer) be a real quadratic field.
Denote by h="h(m) and d=d(m) the class number in the wide sense and the
discriminant of F', respectively. Recently the following theorem was ob-
tained by Yokoi [4] and Louboutin [1]:

Theorem 1 (Yokoi-Louboutin). Let p be an odd prime.

In case m=4p*+1, h(m)=1 if and only if —nt+n+p®is prime for any
integer n such that 1<n<p.

In case m=p*+4, h(m)=1 if and only if —n*+nt+@P*+3)/4 is prime
for any integer n such that 1<n<(p—1)/2.

In case m=p(+4), h(m)=1 if and only if —n*+n+@P*—1)/4 is prime
for any integer n such that 1<n<(p+1)/2.

The purpose of this paper is to improve this theorem, especially con-
cerning the sufficient condition for A(m)=1, by using “reduced quadratic
irrational”, and to prove the following:

Theorem 2. In case m=4p*+1, h(m)=1 if and only if —n*+n+p*is
prime for any integer n such that Vp+1<n<p—1.

In case m=p"+4, im)=1 if and only if —n*+n+®*+3)/4 is prime
for any integer n such that V(@ +5)/2<n<(p—1)/2.

In case m=p(p+4), h(m)=1 if and only if —n*4+n+p+(@P*—1)/4 is
prime for any integer m such that v(p+1)/2<n<(p—1)/2.

To prove Theorem 2, we need some preliminaries.

For two quadratic irrational numbers «, 5, we say that they are equi-
valent to each other and denote «~pg if and only if the periodic part in the
expansion of « into a continued fraction is equal to that of 8. Moreover,
we say that « is reduced if and only if «>1> —a’>0, where «’ is conjugate
of « over Q. Then it is well-known that « is reduced if and only if the
expansion of « into a continued fraction is purely periodic (cf. Perron [2]).

Put R(m)={x e Q(ym): a=(b++d)/2a (a, b € N), « is reduced}. Then
it is easily verified that (d,++ d)/2 belong to R(m), if we choose d,e N
satisfying d,<+ d <d,+2 and d,=d mod 2.

Now we can obtain the following three lemmas:

Lemma 1. Set (d,++v d)/2=[a,, as, - - -, a,], then h(m)=1 if and only
’Lf R(m):{[a,i, Qyyry =00y Qpy Qyy =0 vy ai—l]: 1S’LS’I’L}.

Proof. This lemma follows easily from hA(m)=#(R(m)/ ~) (cf. Yama-
moto [3]).
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Lemma 2. A quadratic irrational (b++ d)/2a belongs to R(m) if and
only if 4a|(d—Db», O+ d)/2>a>(—b+v d)/2, b<Vd .

Proof. We put a={0++d)/2a (@,beN). Then a>1>—a/>0 is
equivalent to (0++/d)/2>a>(—b++d)/2, b<+ d. On the other hand, if
a i3 reduced, then a, b satisfy 4a|(d—0*. Hence Lemma 2 follows from
the definition of R(m).

Now if m=4t*+1 or t*+4, h(m)=1 implies that m is prime and ¢ is
prime or one (cf. [4] Theorem 1), and in case m=t(t+4), h(m)=1 implies
that both ¢ and ¢-+4 are prime and =38 mod 4 from genus theory. There-
fore we have only to consider the cases m=4p*+1, p*+4 or p(p+4) with an
odd prime p.

Lemma 3. In case m=4p*+1, h(m)=1 if and only if R(m)={2p—1+
Vm)[2, (2p—1+ym)/2p, (1+/m)/2p}.

In case m=p*+4, (m)=1 if and only if R(m)={(p++/m)/2}.

In case m=p(p+4), (m)=1if and only if R(m)={p+ym)/2, (0++/m)
| 2p}.

Proof. In case m=4p’+1, we have (d,++v d)/2=2p—1+y/m)/2=
2p—1, 1,11, @Qp—1+ym)/2p=I1, 1, 2p—1], A +ym)/2p=11, 2p—1, 1].
In case m=p*+4, we have (d,++/ d)/2=(p+4/m)/2=[p] and in case m=
p(p+4), we have (d,++v d)/2=+y/m)/2=[p, 1], (p+ym)/2p=[1, p].
Hence the lemma follows from Lemma 1.

Now we can prove our main theorem.

Proof of Theorem 2. The necessity is clear from Theorem 1.

In case m=4p*+1, assume that —n*+n+p? is prime for any integer n
satisfying vp+1<n<p—1. By Lemma 3, it is enough to show that if
(b++/ d)/2a e R(m), then (a, b)=(1, 2p—1), (p, 2p—1) or (p, 1).

If (b+m)/2a belongs to R(m), then 4|m—b? holds, and hence b is odd
because m is odd. Put b=2n—1; then we have 1<n<p and m—b*=4p*+
1—@2n—1l=4(—n*+n+p?, since 1<b<,m. Now by Lemma 2, (b++d)
/2a belongs to R(m) if and only if

a|(=n*+n+pH), —nt+p+l<antp—1, 1<n<p. (%)
Therefore it is enough to verify that (@, n)’s satisfying (x) are exactly
1, »), (p, p) and (p, 1). In case n=p, —n*+n-+p*is equal to p. Hence if
n=p, (a, n)’s satisfying ( ) are exactly (1, p) and (p, p). For n<p—1, we
have —ni+n+p*>n+p—1 and —n+p+1>1. In case Vp+i<n<p—1,
there does not exist any (a, n)’s satisfying ( x ) by our assumption.

In case n<+/p+1, put a=p+2z. Then —n+p+1<a<n+p—1 implies
—n+l1<e<n—1. Since —n*+n+pP*=@+2)(P—2) —W+n+2*= —n*+n+ 2’
mod (p+x), (o, n) satisfies (x) if and only if —n*+n+2*=0mod (p+x).
On the other hand, p+x2>p—n-+1 holds, and moreover —n-+1>—n*+n-+
#*>—n*+n, which implies | —n*+n+a*|<n*—n. We see that n<+p+1
yields n*—n<p—n-+1, and hence | —n*+n+a*|<p+x. Therefore —n’+n
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+2°=0mod (p+x) implies —n*+n-+x*=0. Finally, if n>2, then —n*+n+ x*
<0, and if n=1, then 2=0. Hence if n<<+/p+1, then (&, n) satisfying ( *)
is just (p, 1) only. Thus it follows that (a, n)’s satisfying ( *) are exactly

1, p), (», p) and (p, 1).
We can also prove the second case and the third case in the same way.
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