33. Prime Producing Quadratic Polynomials and Class-number One Problem for Real Quadratic Fields ## By Masaki Kobayashi Department of Mathematics, School of Science, Nagoya University (Communicated by Shokichi IYANAGA, M. J. A., May 14, 1990) Let $F = Q(\sqrt{m})$ (m > 0): square-free integer) be a real quadratic field. Denote by h = h(m) and d = d(m) the class number in the wide sense and the discriminant of F, respectively. Recently the following theorem was obtained by Yokoi [4] and Louboutin [1]: Theorem 1 (Yokoi-Louboutin). Let p be an odd prime. In case $m=4p^2+1$, h(m)=1 if and only if $-n^2+n+p^2$ is prime for any integer n such that $1 \le n < p$. In case $m=p^2+4$, h(m)=1 if and only if $-n^2+n+(p^2+3)/4$ is prime for any integer n such that $1 \le n \le (p-1)/2$. In case m=p(p+4), h(m)=1 if and only if $-n^2+n+(p^2-1)/4$ is prime for any integer n such that $1 \le n \le (p+1)/2$. The purpose of this paper is to improve this theorem, especially concerning the sufficient condition for h(m)=1, by using "reduced quadratic irrational", and to prove the following: Theorem 2. In case $m=4p^2+1$, h(m)=1 if and only if $-n^2+n+p^2$ is prime for any integer n such that $\sqrt{p+1} \le n \le p-1$. In case $m=p^2+4$, h(m)=1 if and only if $-n^2+n+(p^2+3)/4$ is prime for any integer n such that $\sqrt{(p+5)/2} \le n \le (p-1)/2$. In case m=p(p+4), h(m)=1 if and only if $-n^2+n+p+(p^2-1)/4$ is prime for any integer n such that $\sqrt{(p+1)/2} \le n \le (p-1)/2$. To prove Theorem 2, we need some preliminaries. For two quadratic irrational numbers α , β , we say that they are *equivalent* to each other and denote $\alpha \sim \beta$ if and only if the periodic part in the expansion of α into a continued fraction is equal to that of β . Moreover, we say that α is *reduced* if and only if $\alpha > 1 > -\alpha' > 0$, where α' is conjugate of α over Q. Then it is well-known that α is reduced if and only if the expansion of α into a continued fraction is purely periodic (cf. Perron [2]). Put $R(m) = \{\alpha \in Q(\sqrt{m}) : \alpha = (b + \sqrt{d})/2a \ (a, b \in N), \alpha \text{ is reduced}\}$. Then it is easily verified that $(d_0 + \sqrt{d})/2$ belong to R(m), if we choose $d_0 \in N$ satisfying $d_0 < \sqrt{d} < d_0 + 2$ and $d_0 \equiv d \mod 2$. Now we can obtain the following three lemmas: Lemma 1. Set $(d_0 + \sqrt{d})/2 = [a_1, a_2, \dots, a_n]$, then h(m) = 1 if and only if $R(m) = \{[a_i, a_{i+1}, \dots, a_n, a_1, \dots, a_{i-1}] : 1 \le i \le n\}$. *Proof.* This lemma follows easily from $h(m) = \sharp (R(m)/\sim)$ (cf. Yamamoto [3]). Lemma 2. A quadratic irrational $(b+\sqrt{d})/2a$ belongs to R(m) if and only if $4a|(d-b^2)$, $(b+\sqrt{d})/2>a>(-b+\sqrt{d})/2$, $b<\sqrt{d}$. *Proof.* We put $\alpha = (b+\sqrt{d})/2a$ $(a, b \in N)$. Then $\alpha > 1 > -\alpha' > 0$ is equivalent to $(b+\sqrt{d})/2 > a > (-b+\sqrt{d})/2$, $b < \sqrt{d}$. On the other hand, if α is reduced, then a, b satisfy $4a \mid (d-b^2)$. Hence Lemma 2 follows from the definition of R(m). Now if $m=4t^2+1$ or t^2+4 , h(m)=1 implies that m is prime and t is prime or one (cf. [4] Theorem 1), and in case m=t(t+4), h(m)=1 implies that both t and t+4 are prime and $t\equiv 3 \mod 4$ from genus theory. Therefore we have only to consider the cases $m=4p^2+1$, p^2+4 or p(p+4) with an odd prime p. Lemma 3. In case $m=4p^2+1$, h(m)=1 if and only if $R(m)=\{(2p-1+\sqrt{m})/2, (2p-1+\sqrt{m})/2p, (1+\sqrt{m})/2p\}$. In case $m = p^2 + 4$, h(m) = 1 if and only if $R(m) = \{(p + \sqrt{m})/2\}$. In case m=p(p+4), h(m)=1 if and only if $R(m)=\{(p+\sqrt{m})/2, (p+\sqrt{m})/2p\}$. *Proof.* In case $m=4p^2+1$, we have $(d_0+\sqrt{d})/2=(2p-1+\sqrt{m})/2=[\overline{2p-1},\overline{1},\overline{1}],$ $(2p-1+\sqrt{m})/2p=[\overline{1},\overline{1},\overline{2p-1}],$ $(1+\sqrt{m})/2p=[\overline{1},\overline{2p-1},\overline{1}].$ In case $m=p^2+4$, we have $(d_0+\sqrt{d})/2=(p+\sqrt{m})/2=[\overline{p}]$ and in case m=p(p+4), we have $(d_0+\sqrt{d})/2=(p+\sqrt{m})/2=[\overline{p},\overline{1}],$ $(p+\sqrt{m})/2p=[\overline{1},\overline{p}].$ Hence the lemma follows from Lemma 1. Now we can prove our main theorem. *Proof of Theorem* 2. The necessity is clear from Theorem 1. In case $m=4p^2+1$, assume that $-n^2+n+p^2$ is prime for any integer n satisfying $\sqrt{p+1} \le n \le p-1$. By Lemma 3, it is enough to show that if $(b+\sqrt{d})/2a \in R(m)$, then (a, b)=(1, 2p-1), (p, 2p-1) or (p, 1). If $(b+\overline{m})/2a$ belongs to R(m), then $4|m-b^2$ holds, and hence b is odd because m is odd. Put b=2n-1; then we have $1 \le n \le p$ and $m-b^2=4p^2+1-(2n-1)^2=4(-n^2+n+p^2)$, since $1 \le b < \sqrt{m}$. Now by Lemma 2, $(b+\sqrt{d})/2a$ belongs to R(m) if and only if $a \mid (-n^2+n+p^2), -n+p+1 \le a \le n+p-1, 1 \le n \le p.$ (*) Therefore it is enough to verify that (a, n)'s satisfying (*) are exactly (1, p), (p, p) and (p, 1). In case $n=p, -n^2+n+p^2$ is equal to p. Hence if n=p, (a, n)'s satisfying (*) are exactly (1, p) and (p, p). For $n \le p-1$, we have $-n^2+n+p^2>n+p-1$ and -n+p+1>1. In case $\sqrt{p+1}\le n \le p-1$, there does not exist any (a, n)'s satisfying (*) by our assumption. In case $n < \sqrt{p+1}$, put a = p+x. Then $-n+p+1 \le a \le n+p-1$ implies $-n+1 \le x \le n-1$. Since $-n^2+n+p^2=(p+x)(p-x)-n^2+n+x^2 \equiv -n^2+n+x^2 \mod (p+x)$, (a, n) satisfies (*) if and only if $-n^2+n+x^2 \equiv 0 \mod (p+x)$. On the other hand, $p+x \ge p-n+1$ holds, and moreover $-n+1 \ge -n^2+n+x^2 \ge -n^2+n$, which implies $|-n^2+n+x^2| \le n^2-n$. We see that $n < \sqrt{p+1}$ yields $n^2-n < p-n+1$, and hence $|-n^2+n+x^2| < p+x$. Therefore $-n^2+n$ $+x^2\equiv 0 \mod (p+x)$ implies $-n^2+n+x^2=0$. Finally, if $n\geq 2$, then $-n^2+n+x^2<0$, and if n=1, then x=0. Hence if $n<\sqrt{p+1}$, then (a, n) satisfying (*) is just (p, 1) only. Thus it follows that (a, n)'s satisfying (*) are exactly (1, p), (p, p) and (p, 1). We can also prove the second case and the third case in the same way. ## References - [1] S. Louboutin: Prime producing quadratic polynomials and class-number of real quadratic fields. I (preprint). - [2] O. Perron: Die Lehre von den Kettenbrüchen. Teubner, Leipzig (1913). - [3] Y. Yamamoto: Real quadratic number fields with large fundamental units. Osaka J. Math., 8, 261-270 (1971). - [4] H. Yokoi: Class-number one problem for certain kind of real quadratic fields. Proc. Int. Conf. on Class Number and Fundamental Units, Katata, Japan (1986).