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Period Four and Real Quadratic Fields of
Class Number One

By R. A. ]V[0LLIN*) and H. C. WILLIAMS**)

(Communicated by Shokichi IYANA(]A, M. J. A., April 12, 1989)

The purpose of this note is to provide criteria, in terms of prime-
producing quadratic polynomials, for a real quadratic field Q(/-) to
have class number h(d)=l, when the continued fraction expansion of w

is 4 (where =(1+/d)/2 if d--1 (mod 4) and =/d if d--2,3 (mod 4)).
This continues the work of the first author in [4]-[11] and that of both
authors in [12]-[18] in the quest or a general "Rabinowitsch-like" result
for real quadratic field. Rabinowitch [19]-[20], proved that if p--3 (mod 4)
is prime then h (-- p) 1 i and only i x-x/ (p+ 1)/4 is prime or all
integers x with 1_x_ (p-- 7) 4, p7. In [4] the first author found such
a criterion for real quadratic fields of narrow Richaud-Degert (R-D)-type
(see [1] and [21]). Q(/d) (or simply d) is said to be R-D type if d=l+r
with 4/--0 (mod r) and --lr_t. I Irle{1,4} then d is said to be o
narrow R-D type. In [15]-[16] we ound similar criteria for general R-D
types. In fact in [18] we completed the task of actually determining all
real quadratic fields of R-D type having class number one (with possibly
only one more value remaining). However, our forging of intimate links
between the class number one problem and prime-producing quadratic
polynomials makes the existence of the potential additional value virtually
impossible.

With the virtual solution of the class number one problem or real
quadratic fields of R-D type the authors turned their attention to the
general case. In [12] we ound a Rabinowitsch criterion for d--1 (mod 4)
where w has period 3. Several examples of non-R-D types were provided
as applications. The result in this paper is tv find such a criterion when
has period 4. Moreover or d5 (mod 8) we determine all such d with

class number one (with possibly only one more value remaining).

Theorem 1. Let square-free d--1 (mod 4) and o=(a, b, c, b, 2a--l}
(the continued fraction expansion of period 4), d=(2a--1)2+4(c(fb--c)
+f), and 2a--l=b2cf--bc+c--2bf for some positive integers a, b, c and

fi Let, furthermore, f(x) x-x+ (d-- 1) 4. Then h(d) 1 if and only

if the following conditions (1)-(6) all hold.
(1) b (fb c) + l is prime.
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(2)
(3)

(4)

c(fb c) +f is prime.
f(x)/(b(fb--c)+l) is 1 or prime for all integers x with
and x-- 2-1 (mod b (fb c) + 1).
f(x)/(c(fb--c)+f) is prime for all integers x with Oxa--1 and
x-- --2-(fb--c+ 1) (rood c(fb--c)/y).

(5) f(x)/(c(fb--c)+f) is prime or 1 for all integers x with
and x=2-(fb--c--1) (rood c(fb-c)+f).

(6) f(x) is prime for all integers x with Oxa--1 and
(fb--c+l) (rood c(fb--c)+f), x2-1(fb--c--1) (mod c(fb--c)+f),
and x--2-1 (rood b(fb--c)+l).

Proof. The first statement o the theorem may be easily verified
using the methods of Kraitchik [2, Chapter 3-4]. To prove the rest of
the theorem we invoke Lu [3, Theorem 2, p. 119] to get that h(d)=l if
and only i 2a/2b+ c-- 1=(d) +(d) where (d) (respectively (d)) is
the number o solutions o u+4vw=d (respectively u+4v=d) with
positive integers u, v and w. We note that if h(d)=l then (d)=0
d is not prime and (d)= 1 i d is prime. Thus we concentrate on (d).
Since u/4vw=d then u is odd, so we set u=2x+l to get that f(x)=
--x--x+(d--1)/4=vw with Oxa--1. We now investigate the number
of divisors o f(x).

In cases i-iv we assume that d is not prime. We will be able to
deal with the d=lrime case briefly at the end of the proof.

Case i. x-- 2-1 (mod b (fb-- c) + 1). (This means that f(x)-- 0 (mod
b (fb c) + 1)). Thus, 2x+ 1= l(b (fb-- c) + 1) or some positive integer 1.
Since Oxa-1 then llc and must be odd. Since c is odd then
there are (c+ 1) 2 such values of 1. We observe that f(x) :/: b (fb c) + 1
and f(x) :/: (b (fb-- c) + 1)2. Therefore or all such values of l, f(x) has
at least our divisors. Therefore the total number of divisors of f(x)
2or such values of is at least 2c+2.

Case ii. x --2-(fb--c+l)(mod c(fb--c)+f), which implies f(x)--O
(rood c(fb--c)+f). Therefore, 2x+l--c--fb+l(c(fb--c)+f) or some

positive integer 1. Since 0xa-1 then 0lb. If b is odd then
must be odd so there are (b+1)/2 such values of 1. Since each such
value of yields at least our divisors then f(x) has at least 2b/2 of
them. If b is even, then is even so there are b/2 such values of l,
and in ths case f(x) has at least 2b divisors.

There we must exercise caution because we have counted 4 divisors

of f(x) in both case and case ii; namely when
x=(fb2c--bc2/c--1)/2 then f(x)=(b(fb--c)+l)(c(fb--c)/f).

Therefore we revise our count on the case ii divisors to 2b or odd b,
and 2b--2 or even b.

Case iii. x--2-(fb--c--1) (mod c(fb--c)q-f) whence f(x)---O (mod
c(fb--c)+f). Since O<_z<_a-1 then O<l<b. If b is odd, then is odd
and so there are (b+ 1)/2 such values of 1. Since f(x) has at least four
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divisors or all values of x except x=a--1, (in which case f(x)=
c(fb--c+f)), in the rnge Ox_a--l, then there are at least 2b divisors.
I b is even, then is 0 or even and there (b/2)/1 such values of
yielding at least 2b/2 divisors.

Case iv. For the remaining a--((c+l)/2+b+l) values o x, f(x)
has at least 2(a--((c+l)/2+b+1))=2a--2b--c--3 divis.rs.

Hence rom cases i-iv, f(x) has a total o at least 2a+2b+c--1
divisors if d is not prime. Thus 2l(d)2a/2b/c--1. Moreover as noted
at the. outset (d)/(d)=2a+2b/c--1. Hence the minimum must be
achieved; i.e., conditions (1)-(6) o the theorem must hold.

I d is prime, then the only difference in cases i-iii is that possibly

f(x) p where
p=c(fb--c)+f or p-b(fb--c)-l.

However, since (d)=l in this case, then d=p+(2x/l) in at most one
of the cases i-iii, and or this value of x, f(x) has three divisors. Hence
when d is prime the total number o divisors o f(x) is at least 2a/2b
/c--2. Therefore, 2l(d)_2a/2b+c--2, and so again 2(d)/2(d)2a/2b
/c--1 and the minimum must be achieved. This completes the proof.

Corollary 1. If dl (mod 8) and o has period 4 then h(d)--1 if
and only if d=33.

Proof. Since d=_l (mocl 8) then c(fb--c)/f is even. Hence by
Theorem 1-(2), c(fb--c)/f=2; whence, c--f=l and b-2; i.e., h(d)--1
i and only i d=33.

Example o R-D types other then 33 satisfying Theorem 1 are 141,
213, 413, 573, 717, 1077, 1293 and 1757. Examples o non-R-D types
satisfying Theorem 1 are 69, 133, 1397 and 3053. We conjecture that
the above values represent all values, satisfying Theorem 1. However
or dl (mod 4) o period 4 only R-D types appear or h(d)=l as we
see in"

Theorem 2. If square-free dl (mod 4) and o has period 4 hen
(a, b, c, b, 2a}, d--a2--c/f(bc+l), and 2a--bcf+2fb--bc2--c for positive
integers a, b, c and f. Thus, h(d)=l if and only if d=(c/2)--2.

Proof. (I) Assume d=2 (mod 4). By the result of Lu (op-cit.),
h(d)=l if and only i 2(d)=2a/2b/c/O where t-=l if c is odd,
if c is even, and (d) is the number o solutions of u+4vw=4d in non-
negative integers u, v and w. Hence u=2x and we get" f(x)--d--x=
vw, with Ox_a. We now examine the number o divisors o f(x).

Case io a is odd and c is even. There are (a/l)/2 values of x
or which f(x) is even, and so or these values f(x) has at least 2a/2
divisors. For the remaining (a/1)/2 values o x there are at least a/l
divisors o f(x). Hence 21(d) 3a/3. Thus

2a/2b/c/O=2a/2b+c/2_3a/3; i.e., 4b+3cbcf/2f--bc-/2.
Now, if f_2 then 3cbcf--bc+2_bc+2. Therefore b_2. If b=2
then 3c_ 4cf--2c/2, whence 2f-- c 1. However, c is even, a contra-
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diction. Hence b 1. Therefore 3c_ cf-- c2/ 2 whence, f-- c + 1 or f
c+ 2. If f= c+2 then a (3c+ 4) 2 which contradicts 2b + c_ a +2. Thus,
f=c+l which implies a=c+l; whence d=(c+ly-2. It is a tedious
check to show that f=l connot hold.

Case ii. a is odd and c is odd. (Thus t=l.) As in case (d)_
3a/3. Thus 2a+2b+c+23a+3; i.e., 2b/c_a+2. Again it is a tedious
check as in case i to show that f_2 and that this forces b=l and
f=a=c+l. However, a is odd and c is odd, a contradiction.

Cace iiio a is even and c is odd. (Thus t=l.) In this case there
are (a/2)+ 1 values of x or which f(x) is even, and f(x) has at least
2a+4 divisors for these values. For the remaining a/2 values, f(x) has
at least a divisors. Hence (d)3a/4. Therefore 1+2a+2b/c_3a/4;
i.e., 2b/ca+3. Equivalently; 4b+3cb2cf/2fb--bc+6. A tedious
check as in case shows f_2 and that this orces b:=l and f=a=c+l;
whence, d= (c+2)-2=3 (rood 4), a contradiction.

Case iv a even and c even. This case is dispatched in a similar
fashion to cases ii-iii.

(II) Assume d3 (rood 4).
Since this situation is so similar to the above we merely point out

the acts. The details are a straightforward check. When a is even
and c is odd we can show that d=(c+2y-2 with b--1 and a=c+l=f.
In all of the remaing cases we get a contradiction. This proves the result.

Corollary 2. Suppose dl (mod 4) and o has period 4. Then with
possibly only one more value remaining, the following set contains all
such d with h(d)=l"

[7, 14, 23, 47, 62, 167, 398}.
Proof. If d=l--2 then d is an example of an R-D type. In [18] the

authors found all real quadratic fields of R-D type having class number
one to be, with possibly only one more value remaining, in the following
set"

{2, 3, 6, 7, 11, 14, 17, 21, 23, 29, 33, 37, 38, 47, 53, 62, 77, 83,
101, 141, 167, 173, 197, 213, 227, 237, 293, 398, 413, 437, 453,
573, 677, 717, 1077, 1133, 1253, 1293, 1757}.
A check o this set shows that the only ones of the orm i-2 are

those listed in the corollary.
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