25. Period Four and Real Quadratic Fields of Class Number One

By R. A. Mollin*) and H. C. Williams**)

(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1989)

The purpose of this note is to provide criteria, in terms of primeproducing quadratic polynomials, for a real quadratic field $\boldsymbol{Q}(\sqrt{d})$ to have class number $h(d)=1$, when the continued fraction expansion of ω is $4($ where $\omega=(1+\sqrt{d}) / 2$ if $d \equiv 1(\bmod 4)$ and $\omega=\sqrt{d}$ if $d \equiv 2,3(\bmod 4))$. This continues the work of the first author in [4]-[11] and that of both authors in [12]-[18] in the quest for a general "Rabinowitsch-like" result for real quadratic field. Rabinowitch [19]-[20], proved that if $p \equiv 3(\bmod 4)$ is prime then $h(-p)=1$ if and only if $x^{2}-x+(p+1) / 4$ is prime for all integers x with $1 \leq x \leq(p-7) / 4, p>7$. In [4] the first author found such a criterion for real quadratic fields of narrow Richaud-Degert (R-D)-type (see [1] and [21]). $\boldsymbol{Q}(\sqrt{d})$ (or simply d) is said to be R-D type if $d=l^{2}+r$ with $4 l \equiv 0(\bmod r)$ and $-l<r \leq l$. If $|r| \in\{1,4\}$ then d is said to be of narrow R-D type. In [15]-[16] we found similar criteria for general R-D types. In fact in [18] we completed the task of actually determining all real quadratic fields of R-D type having class number one (with possibly only one more value remaining). However, our forging of intimate links between the class number one problem and prime-producing quadratic polynomials makes the existence of the potential additional value virtually impossible.

With the virtual solution of the class number one problem for real quadratic fields of R-D type the authors turned their attention to the general case. In [12] we found a Rabinowitsch criterion for $d \equiv 1(\bmod 4)$ where ω has period 3. Several examples of non-R-D types were provided as applications. The result in this paper is to find such a criterion when ω has period 4. Moreover for $d \equiv 5(\bmod 8)$ we determine all such d with class number one (with possibly only one more value remaining).

Theorem 1. Let square-free $d \equiv 1(\bmod 4)$ and $\omega=\langle a, \overline{b, c, b, 2 a-1}\rangle$ (the continued fraction expansion of period 4$), d=(2 a-1)^{2}+4(c(f b-c)$ $+f)$, and $2 a-1=b^{2} c f-b c^{2}+c-2 b f$ for some positive integers a, b, c and f. Let, furthermore, $f_{d}(x)=-x^{2}-x+(d-1) / 4$. Then $h(d)=1$ if and only if the following conditions (1)-(6) all hold.
(1) $b(f b-c)+1$ is prime.

[^0](2) $c(f b-c)+f$ is prime.
(3) $f_{d}(x) /(b(f b-c)+1)$ is 1 or prime for all integers x with $0 \leq x \leq a-1$ and $x \equiv-2^{-1}(\bmod b(f b-c)+1)$.
(4) $f_{a}(x) /(c(f b-c)+f)$ is prime for all integers x with $0 \leq x \leq a-1$ and $x \equiv-2^{-1}(f b-c+1)(\bmod c(f b-c)+f)$.
(5) $f_{a}(x) /(c(f b-c)+f)$ is prime or 1 for all integers x with $0 \leq x \leq a-1$ and $x \equiv 2^{-1}(f b-c-1)(\bmod c(f b-c)+f)$.
(6) $f_{d}(x)$ is prime for all integers x with $0 \leq x \leq a-1$ and $x \not \equiv-2^{-1}$ $(f b-c+1)(\bmod c(f b-c)+f), x \neq 2^{-1}(f b-c-1)(\bmod c(f b-c)+f)$, and $x \not \equiv-2^{-1}(\bmod b(f b-c)+1)$.
Proof. The first statement of the theorem may be easily verified using the methods of Kraitchik [2, Chapter 3-4]. To prove the rest of the theorem we invoke Lu [3, Theorem 2, p.119] to get that $h(d)=1$ if and only if $2 a+2 b+c-1=\lambda_{1}(d)+\lambda_{2}(d)$ where $\lambda_{1}(d)$ (respectively $\lambda_{2}(d)$) is the number of solutions of $u^{2}+4 v w=d$ (respectively $u^{2}+4 v^{2}=d$) with positive integers u, v and w. We note that if $h(d)=1$ then $\lambda_{2}(d)=0$ if d is not prime and $\lambda_{2}(d)=1$ if d is prime. Thus we concentrate on $\lambda_{1}(d)$. Since $u^{2}+4 v w=d$ then u is odd, so we set $u=2 x+1$ to get that $f_{d}(x)=$ $-x^{2}-x+(d-1) / 4=v w$ with $0 \leq x \leq a-1$. We now investigate the number of divisors of $f_{d}(x)$.

In cases i-iv we assume that d is not prime. We will be able to deal with the $d=$ prime case briefly at the end of the proof.

Case i. $x \equiv-2^{-1}(\bmod b(f b-c)+1)$. (This means that $f_{d}(x) \equiv 0(\bmod$ $b(f b-c)+1)$). Thus, $2 x+1=l(b(f b-c)+1)$ for some positive integer l. Since $0 \leq x \leq a-1$ then $1 \leq l \leq c$ and l must be odd. Since c is odd then there are $(c+1) / 2$ such values of l. We observe that $f_{a}(x) \neq b(f b-c)+1$ and $f_{d}(x) \neq(b(f b-c)+1)^{2}$. Therefore for all such values of $l, f_{d}(x)$ has at least four divisors. Therefore the total number of divisors of $f_{d}(x)$ for such values of l is at least $2 c+2$.

Case ii. $\quad x \equiv-2^{-1}(f b-c+1)(\bmod c(f b-c)+f)$, which implies $f_{d}(x) \equiv 0$ $(\bmod c(f b-c)+f)$. Therefore, $2 x+1=c-f b+l(c(f b-c)+f)$ for some positive integer l. Since $0 \leq x \leq a-1$ then $0 \leq l \leq b$. If b is odd then l must be odd so there are $(b+1) / 2$ such values of l. Since each such value of l yields at least four divisors then $f_{a}(x)$ has at least $2 b+2$ of them. If b is even, then l is even so there are $b / 2$ such values of l, and in this case $f_{d}(x)$ has at least $2 b$ divisors.

There we must exercise caution because we have counted 4 divisors of $f_{d}(x)$ in both case i and case ii ; namely when

$$
x=\left(f b^{2} c-b c^{2}+c-1\right) / 2 \text { then } f_{d}(x)=(b(f b-c)+1)(c(f b-c)+f) .
$$

Therefore we revise our count on the case ii divisors to $2 b$ for odd b, and $2 b-2$ for even b.

Case iii. $\quad x \equiv 2^{-1}(f b-c-1)(\bmod c(f b-c)+f)$ whence $f_{d}(x) \equiv 0(\bmod$ $c(f b-c)+f)$. Since $0 \leq x \leq a-1$ then $0 \leq l \leq b$. If b is odd, then l is odd and so there are $(b+1) / 2$ such values of l. Since $f_{d}(x)$ has at least four
divisors for all values of x except $x=a-1$, (in which case $f_{d}(x)=$ $c(f b-c+f)$), in the range $0 \leq x \leq a-1$, then there are at least $2 b$ divisors. If b is even, then l is 0 or even and there $(b / 2)+1$ such values of l yielding at least $2 b+2$ divisors.

Case iv. For the remaining $a-((c+1) / 2+b+1)$ values of $x, f_{d}(x)$ has at least $2(a-((c+1) / 2+b+1))=2 a-2 b-c-3$ divisors.

Hence from cases i-iv, $f_{d}(x)$ has a total of at least $2 a+2 b+c-1$ divisors if d is not prime. Thus $\lambda_{1}(d) \geq 2 a+2 b+c-1$. Moreover as noted at the outset $\lambda_{1}(d)+\lambda_{2}(d)=2 a+2 b+c-1$. Hence the minimum must be achieved; i.e., conditions (1)-(6) of the theorem must hold.

If d is prime, then the only difference in cases i-iii is that possibly $f_{d}(x)=p^{2}$ where

$$
p=c(f b-c)+f \quad \text { or } \quad p=b(f b-c)+1 .
$$

However, since $\lambda_{2}(d)=1$ in this case, then $d=p^{2}+(2 x+1)^{2}$ in at most one of the cases i -iii, and for this value of $x, f_{d}(x)$ has three divisors. Hence when d is prime the total number of divisors of $f_{d}(x)$ is at least $2 a+2 b$ $+c-2$. Therefore, $\lambda_{1}(d) \geq 2 a+2 b+c-2$, and so again $\lambda_{1}(d)+\lambda_{2}(d) \geq 2 a+2 b$ $+c-1$ and the minimum must be achieved. This completes the proof.

Corollary 1. If $d \equiv 1(\bmod 8)$ and ω has period 4 then $h(d)=1$ if and only if $d=33$.

Proof. Since $d \equiv 1(\bmod 8)$ then $c(f b-c)+f$ is even. Hence by Theorem 1-(2), $c(f b-c)+f=2$; whence, $c=f=1$ and $b=2$; i.e., $\mathrm{h}(d)=1$ if and only if $d=33$.

Example of R-D types other then 33 satisfying Theorem 1 are 141, 213, 413, 573, 717, 1077, 1293 and 1757. Examples of non-R-D types satisfying Theorem 1 are 69, 133, 1397 and 3053 . We conjecture that the above values represent all values, satisfying Theorem 1. However for $d \not \equiv 1(\bmod 4)$ of period 4 only R-D types appear for $h(d)=1$ as we see in:

Theorem 2. If square-free $d \not \equiv 1(\bmod 4)$ and ω has period 4 then $\omega=$ $\langle a, b, c, b, 2 a\rangle, d=a^{2}-c^{2}+f(b c+1)$, and $2 a=b^{2} c f+2 f b-b c^{2}-c$ for positive integers a, b, c and f. Thus, $h(d)=1$ if and only if $d=(c+2)^{2}-2$.

Proof. (I) Assume $d \equiv 2(\bmod 4) . ~ B y ~ t h e ~ r e s u l t ~ o f ~ L u ~(o p-c i t),$. $h(d)=1$ if and only if $\lambda_{1}(d)=2 a+2 b+c+\theta$ where $\theta=1$ if c is odd, $\theta=2$ if c is even, and $\lambda_{1}(d)$ is the number of solutions of $u^{2}+4 v w=4 d$ in nonnegative integers u, v and w. Hence $u=2 x$ and we get: $f_{d}(x)=d-x^{2}=$ $v w$, with $0 \leq x \leq a$. We now examine the number of divisors of $f_{d}(x)$.

Case i. a is odd and c is even. There are $(a+1) / 2$ values of x for which $f_{d}(\mathrm{x})$ is even, and so for these values $f_{d}(x)$ has at least $2 a+2$ divisors. For the remaining $(a+1) / 2$ values of x there are at least $a+1$ divisors of $f_{d}(x)$. Hence $\lambda_{1}(d) \geq 3 a+3$. Thus;

$$
2 a+2 b+c+\theta=2 a+2 b+c+2 \geq 3 a+3 ; \text { i.e., } 4 b+3 c \geq b^{2} c f+2 f-b c^{2}+2
$$

Now, if $f \geq 2$ then $3 c \geq b^{2} c f-b c^{2}+2 \geq b c+2$. Therefore $b \leq 2$. If $b=2$ then $3 c \geq 4 c f-2 c^{2}+2$, whence $2 f-c=1$. However, c is even, a contra-
diction. Hence $b=1$. Therefore $3 c \geq c f-c^{2}+2$; whence, $f=c+1$ or $f=$ $c+2$. If $f=c+2$ then $a=(3 c+4) / 2$ which contradicts $2 b+c \geq a+2$. Thus, $f=c+1$ which implies $a=c+1$; whence $d=(c+1)^{2}-2$. It is a tedious check to show that $f=1$ connot hold.

Case ii. a is odd and c is odd. (Thus $\theta=1$.) As in case i $\lambda_{1}(d) \geq$ $3 a+3$. Thus $2 a+2 b+c+2 \geq 3 a+3$; i.e., $2 b+c \geq a+2$. Again it is a tedious check as in case i to show that $f \geq 2$ and that this forces $b=1$ and $f=a=c+1$. However, a is odd and c is odd, a contradiction.

Cace iii. a is even and c is odd. (Thus $\theta=1$.) In this case there are $(a / 2)+1$ values of x for which $f_{d}(x)$ is even, and $f_{d}(x)$ has at least $2 a+4$ divisors for these values. For the remaining $a / 2$ values, $f_{d}(x)$ has at least a divisors. Hence $\lambda_{1}(d) \geq 3 a+4$. Therefore $1+2 a+2 b+c \geq 3 a+4$; i.e., $2 b+c \geq a+3$. Equivalently; $4 b+3 c \geq b^{2} c f+2 f b-b c^{2}+6$. A tedious check as in case i shows $f \geq 2$ and that this forces $b:=1$ and $f=a=c+1$; whence, $d=(c+2)^{2}-2 \equiv 3(\bmod 4)$, a contradiction.

Case iv. a even and c even. This case is dispatched in a similar fashion to cases ii-iii.
(II) Assume $d \equiv 3(\bmod 4)$.

Since this situation is so similar to the above we merely point out the facts. The details are a straightforward check. When a is even and c is odd we can show that $d=(c+2)^{2}-2$ with $b=1$ and $a=c+1=f$. In all of the remaing cases we get a contradiction. This proves the result.

Corollary 2. Suppose $d \not \equiv 1(\bmod 4)$ and ω has period 4 . Then with possibly only one more value remaining, the following set contains all such d with $h(d)=1$:

$$
\{7,14,23,47,62,167,398\} .
$$

Proof. If $d=l^{2}-2$ then d is an example of an R-D type. In [18] the authors found all real quadratic fields of R-D type having class number one to be, with possibly only one more value remaining, in the following set:
$\{2,3,6,7,11,14,17,21,23,29,33,37,38,47,53,62,77,83$, $101,141,167,173,197,213,227,237,293,398,413,437,453$, $573,677,717,1077,1133,1253,1293,1757\}$.
A check of this set shows that the only ones of the form $l^{2}-2$ are those listed in the corollary.

References

[1] G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92-97 (1958).
[2] M. Kraitchik: Théorie des Nombres T2. Paris (1926).
[3] H. Lu: On the class-number of real quadratic fields. Sci. Sinica (Special Issue), 2, 118-130 (1979).
[4] R. A. Mollin: Class number one criteria for real quadratic fields. I. Proc. Japan Acad., 63A, 121-125 (1987).
[5] R. A. Mollin: Class number one criteria for real quadratic fields. II. Proc. Japan Acad., 63A, 162-164 (1987).
[6] --: Class numbers of quadratic fields determined by solvability of diophantine equations. Math. Comp., 177, 233-242 (1987).
[7] ——: On class numbers of quadratic extensions of algebraic number fields. Proc. Japan Acad., 62A, 33-36 (1986).
[8] -_: Diophantine equations and class numbers. J. Number Theory, 24, 7-19 (1986).
[9] ——: Generalized Fibonacci primitive roots, and class numbers of real quadratic fields. Fibonacci Quart., 26, 46-53 (1988).
[10] --: On the insolubility of a class of diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type. Nagoya Math. J., 105, 39-47 (1987).
[11] -: Lower bounds for class numbers of real quadratic and biquadratic fields. Proc. Amer. Math. Soc., 101, 439-444 (1987).
[12] R. A. Mollin and H. C. Williams: Class number one for real quadratic fields, continued fractions and reduced ideals (to appear in Proceedings of the NATO ASI on Number Theory and Applications at Banff, Canada, 1988).
[13] -: Computation of the class number of a real quadratic field (to appear in Advances in the theory of computation and computational mathematics).
[14] ——: A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Amer. Math. Soc., 102, 794-796 (1988).
[15] -: Prime producing quadratic polynomials and real quadratic fields of class number one (to appear in Proceedings of the International Number Theory Conference at Quebec, Canada, 1987).
[16] -: On prime valued polynomials and class numbers of real quadratic fields. Nagoya Math. J., 112, 143-151 (1988).
[17] --: Quadratic non-residues and prime-producing quadratic polynomials (to appear in Canad. Math. Bulletin).
$[18]$-: Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception) (to appear in Proceedings of the first conference of the Canadian Number Theory Association at Banff, Canada, 1988).
[19] G. Rabinowitsch: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen zahlkörpern. Proc. Fifth Internat. Congress Math. (Cambridge), 1, 418-424 (1913).
[20] - : Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Math., 142, 153-164 (1913).
[21] C. Richaud: Sur la résolution des équations $x^{2}-A y^{2}= \pm 1$. Atti. Accad. Pontif. Nuovi Lincei, pp. 177-182 (1866).

[^0]: *) Mathematics Department, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.
 **) Computer Science Department, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.

