25. Period Four and Real Quadratic Fields of Class Number One

By R. A. MOLLIN^{*)} and H. C. WILLIAMS^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1989)

The purpose of this note is to provide criteria, in terms of primeproducing quadratic polynomials, for a real quadratic field $Q(\sqrt{d})$ to have class number h(d) = 1, when the continued fraction expansion of ω is 4 (where $\omega = (1 + \sqrt{d})/2$ if $d \equiv 1 \pmod{4}$ and $\omega = \sqrt{d}$ if $d \equiv 2, 3 \pmod{4}$). This continues the work of the first author in [4]-[11] and that of both authors in [12]–[18] in the quest for a general "Rabinowitsch-like" result for real quadratic field. Rabinowitch [19]–[20], proved that if $p \equiv 3 \pmod{4}$ is prime then h(-p)=1 if and only if $x^2-x+(p+1)/4$ is prime for all integers x with $1 \le x \le (p-7)/4$, p > 7. In [4] the first author found such a criterion for real quadratic fields of narrow Richaud-Degert (R-D)-type (see [1] and [21]). $Q(\sqrt{d})$ (or simply d) is said to be R-D type if $d = l^2 + r$ with $4l \equiv 0 \pmod{r}$ and $-l \leq r \leq l$. If $|r| \in \{1, 4\}$ then d is said to be of narrow R-D type. In [15]–[16] we found similar criteria for general R-D types. In fact in [18] we completed the task of actually determining all real quadratic fields of R-D type having class number one (with possibly only one more value remaining). However, our forging of intimate links between the class number one problem and prime-producing quadratic polynomials makes the existence of the potential additional value virtually impossible.

With the virtual solution of the class number one problem for real quadratic fields of R-D type the authors turned their attention to the general case. In [12] we found a Rabinowitsch criterion for $d\equiv 1 \pmod{4}$ where ω has period 3. Several examples of *non*-R-D types were provided as applications. The result in this paper is to find such a criterion when ω has period 4. Moreover for $d \equiv 5 \pmod{8}$ we determine all such d with class number one (with possibly only one more value remaining).

Theorem 1. Let square-free $d\equiv 1 \pmod{4}$ and $\omega = \langle a, \overline{b, c, b, 2a-1} \rangle$ (the continued fraction expansion of period 4), $d=(2a-1)^2+4(c(fb-c)+f)$, and $2a-1=b^2cf-bc^2+c-2bf$ for some positive integers a, b, c and f. Let, furthermore, $f_d(x) = -x^2 - x + (d-1)/4$. Then h(d) = 1 if and only if the following conditions (1)-(6) all hold.

(1) b(fb-c)+1 is prime.

^{*)} Mathematics Department, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.

^{**} Computer Science Department, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.

- (2) c(fb-c)+f is prime.
- (3) $f_a(x)/(b(fb-c)+1)$ is 1 or prime for all integers x with $0 \le x \le a-1$ and $x \equiv -2^{-1} \pmod{b(fb-c)+1}$.
- (4) $f_d(x)/(c(fb-c)+f)$ is prime for all integers x with $0 \le x \le a-1$ and $x \equiv -2^{-1}(fb-c+1) \pmod{c(fb-c)+f}$.
- (5) $f_d(x)/(c(fb-c)+f)$ is prime or 1 for all integers x with $0 \le x \le a-1$ and $x \equiv 2^{-1}(fb-c-1) \pmod{c(fb-c)+f}$.
- (6) $f_d(x)$ is prime for all integers x with $0 \le x \le a-1$ and $x \ne -2^{-1}$ $(fb-c+1) \pmod{c(fb-c)+f}, x \ne 2^{-1}(fb-c-1) \pmod{c(fb-c)+f},$ and $x \ne -2^{-1} \pmod{b(fb-c)+1}.$

Proof. The first statement of the theorem may be easily verified using the methods of Kraitchik [2, Chapter 3-4]. To prove the rest of the theorem we invoke Lu [3, Theorem 2, p. 119] to get that h(d)=1 if and only if $2a+2b+c-1=\lambda_1(d)+\lambda_2(d)$ where $\lambda_1(d)$ (respectively $\lambda_2(d)$) is the number of solutions of $u^2+4vw=d$ (respectively $u^2+4v^2=d$) with positive integers u, v and w. We note that if h(d)=1 then $\lambda_2(d)=0$ if d is not prime and $\lambda_2(d)=1$ if d is prime. Thus we concentrate on $\lambda_1(d)$. Since $u^2+4vw=d$ then u is odd, so we set u=2x+1 to get that $f_d(x)=$ $-x^2-x+(d-1)/4=vw$ with $0\leq x\leq a-1$. We now investigate the number of divisors of $f_d(x)$.

In cases i-iv we assume that d is not prime. We will be able to deal with the d=prime case briefly at the end of the proof.

Case i. $x \equiv -2^{-1} \pmod{b(fb-c)+1}$. (This means that $f_d(x) \equiv 0 \pmod{b(fb-c)+1}$). Thus, 2x+1=l(b(fb-c)+1) for some positive integer l. Since $0 \le x \le a-1$ then $1 \le l \le c$ and l must be odd. Since c is odd then there are (c+1)/2 such values of l. We observe that $f_d(x) \ne b(fb-c)+1$ and $f_d(x) \ne (b(fb-c)+1)^2$. Therefore for all such values of l, $f_d(x)$ has at least four divisors. Therefore the total number of divisors of $f_d(x)$ for such values of l is at least 2c+2.

Case ii. $x \equiv -2^{-1}(fb-c+1) \pmod{c(fb-c)+f}$, which implies $f_d(x) \equiv 0 \pmod{c(fb-c)+f}$. Therefore, 2x+1=c-fb+l(c(fb-c)+f) for some positive integer *l*. Since $0 \leq x \leq a-1$ then $0 \leq l \leq b$. If *b* is odd then *l* must be odd so there are (b+1)/2 such values of *l*. Since each such value of *l* yields at least four divisors then $f_d(x)$ has at least 2b+2 of them. If *b* is even, then *l* is even so there are b/2 such values of *l*, and in this case $f_d(x)$ has at least 2*b* divisors.

There we must exercise caution because we have counted 4 divisors of $f_d(x)$ in both case i and case ii; namely when

 $x = (fb^2c - bc^2 + c - 1)/2$ then $f_d(x) = (b(fb - c) + 1)(c(fb - c) + f).$

Therefore we revise our count on the case ii divisors to 2b for odd b, and 2b-2 for even b.

Case iii. $x\equiv 2^{-l}(fb-c-1) \pmod{c(fb-c)+f}$ whence $f_a(x)\equiv 0 \pmod{c(fb-c)+f}$. Since $0\leq x\leq a-1$ then $0\leq l\leq b$. If b is odd, then l is odd and so there are (b+1)/2 such values of l. Since $f_a(x)$ has at least four

divisors for all values of x except x=a-1, (in which case $f_d(x)=c(fb-c+f)$), in the range $0 \le x \le a-1$, then there are at least 2b divisors. If b is even, then l is 0 or even and there (b/2)+1 such values of l yielding at least 2b+2 divisors.

Case iv. For the remaining a - ((c+1)/2 + b + 1) values of x, $f_d(x)$ has at least 2(a - ((c+1)/2 + b + 1)) = 2a - 2b - c - 3 divisors.

Hence from cases i-iv, $f_d(x)$ has a total of at least 2a+2b+c-1 divisors if d is not prime. Thus $\lambda_1(d) \ge 2a+2b+c-1$. Moreover as noted at the outset $\lambda_1(d) + \lambda_2(d) = 2a+2b+c-1$. Hence the minimum must be achieved; i.e., conditions (1)-(6) of the theorem must hold.

If d is prime, then the only difference in cases i-iii is that possibly $f_d(x) = p^2$ where

p = c(fb-c) + f or p = b(fb-c) + 1.

However, since $\lambda_2(d) = 1$ in this case, then $d = p^2 + (2x+1)^2$ in at most one of the cases i-iii, and for this value of x, $f_d(x)$ has three divisors. Hence when d is prime the total number of divisors of $f_d(x)$ is at least 2a+2b+c-2. Therefore, $\lambda_1(d) \ge 2a+2b+c-2$, and so again $\lambda_1(d) + \lambda_2(d) \ge 2a+2b+c-1$ and the minimum must be achieved. This completes the proof.

Corollary 1. If $d\equiv 1 \pmod{8}$ and ω has period 4 then h(d)=1 if and only if d=33.

Proof. Since $d\equiv 1 \pmod{8}$ then c(fb-c)+f is even. Hence by Theorem 1-(2), c(fb-c)+f=2; whence, c=f=1 and b=2; i.e., h(d)=1 if and only if d=33.

Example of R-D types other then 33 satisfying Theorem 1 are 141, 213, 413, 573, 717, 1077, 1293 and 1757. Examples of non-R-D types satisfying Theorem 1 are 69, 133, 1397 and 3053. We conjecture that the above values represent all values, satisfying Theorem 1. However for $d \neq 1 \pmod{4}$ of period 4 only R-D types appear for h(d)=1 as we see in:

Theorem 2. If square-free $d \not\equiv 1 \pmod{4}$ and ω has period 4 then $\omega = \langle a, b, c, b, 2a \rangle$, $d = a^2 - c^2 + f(bc+1)$, and $2a = b^2cf + 2fb - bc^2 - c$ for positive integers a, b, c and f. Thus, h(d) = 1 if and only if $d = (c+2)^2 - 2$.

Proof. (I) Assume $d\equiv 2 \pmod{4}$. By the result of Lu (op-cit.), h(d)=1 if and only if $\lambda_1(d)=2a+2b+c+\theta$ where $\theta=1$ if c is odd, $\theta=2$ if c is even, and $\lambda_1(d)$ is the number of solutions of $u^2+4vw=4d$ in non-negative integers u, v and w. Hence u=2x and we get: $f_a(x)=d-x^2=vw$, with $0\leq x\leq a$. We now examine the number of divisors of $f_a(x)$.

Case i. *a* is odd and *c* is even. There are (a+1)/2 values of *x* for which $f_a(x)$ is even, and so for these values $f_a(x)$ has at least 2a+2 divisors. For the remaining (a+1)/2 values of *x* there are at least a+1 divisors of $f_a(x)$. Hence $\lambda_1(d) \ge 3a+3$. Thus;

 $2a+2b+c+\theta=2a+2b+c+2\ge 3a+3$; i.e., $4b+3c\ge b^2cf+2f-bc^2+2$. Now, if $f\ge 2$ then $3c\ge b^2cf-bc^2+2\ge bc+2$. Therefore $b\le 2$. If b=2 then $3c\ge 4cf-2c^2+2$, whence 2f-c=1. However, c is even, a contra-

No. 4]

diction. Hence b=1. Therefore $3c \ge cf-c^2+2$; whence, f=c+1 or f=c+2. If f=c+2 then a=(3c+4)/2 which contradicts $2b+c\ge a+2$. Thus, f=c+1 which implies a=c+1; whence $d=(c+1)^2-2$. It is a tedious check to show that f=1 connot hold.

Case ii. *a* is odd and *c* is odd. (Thus $\theta=1$.) As in case i $\lambda_1(d) \geq 3a+3$. Thus $2a+2b+c+2\geq 3a+3$; i.e., $2b+c\geq a+2$. Again it is a tedious check as in case i to show that $f\geq 2$ and that this forces b=1 and f=a=c+1. However, *a* is odd and *c* is odd, a contradiction.

Cace iii. *a* is even and *c* is odd. (Thus $\theta = 1$.) In this case there are (a/2)+1 values of *x* for which $f_a(x)$ is even, and $f_a(x)$ has at least 2a+4 divisors for these values. For the remaining a/2 values, $f_a(x)$ has at least *a* divisors. Hence $\lambda_1(d) \ge 3a+4$. Therefore $1+2a+2b+c \ge 3a+4$; i.e., $2b+c \ge a+3$. Equivalently; $4b+3c \ge b^2cf+2fb-bc^2+6$. A tedious check as in case i shows $f \ge 2$ and that this forces b = 1 and f = a = c+1; whence, $d = (c+2)^2 - 2 \equiv 3 \pmod{4}$, a contradiction.

Case iv. a even and c even. This case is dispatched in a similar fashion to cases ii-iii.

(II) Assume $d \equiv 3 \pmod{4}$.

Since this situation is so similar to the above we merely point out the facts. The details are a straightforward check. When a is even and c is odd we can show that $d=(c+2)^2-2$ with b=1 and a=c+1=f. In all of the remaing cases we get a contradiction. This proves the result.

Corollary 2. Suppose $d \not\equiv 1 \pmod{4}$ and ω has period 4. Then with possibly only one more value remaining, the following set contains all such d with h(d)=1:

 $\{7, 14, 23, 47, 62, 167, 398\}.$

Proof. If $d=l^2-2$ then d is an example of an R-D type. In [18] the authors found all real quadratic fields of R-D type having class number one to be, with possibly only one more value remaining, in the following set:

{2, 3, 6, 7, 11, 14, 17, 21, 23, 29, 33, 37, 38, 47, 53, 62, 77, 83, 101, 141, 167, 173, 197, 213, 227, 237, 293, 398, 413, 437, 453, 573, 677, 717, 1077, 1133, 1253, 1293, 1757}.

A check of this set shows that the only ones of the form l^2-2 are those listed in the corollary.

References

- G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92–97 (1958).
- [2] M. Kraitchik: Théorie des Nombres T2. Paris (1926).
- [3] H. Lu: On the class-number of real quadratic fields. Sci. Sinica (Special Issue), 2, 118-130 (1979).
- [4] R. A. Mollin: Class number one criteria for real quadratic fields. I. Proc. Japan Acad., 63A, 121-125 (1987).

- [5] R. A. Mollin: Class number one criteria for real quadratic fields. II. Proc. Japan Acad., 63A, 162–164 (1987).
- [6] ——: Class numbers of quadratic fields determined by solvability of diophantine equations. Math. Comp., 177, 233-242 (1987).
- [7] ——: On class numbers of quadratic extensions of algebraic number fields. Proc. Japan Acad., 62A, 33-36 (1986).
- [8] ——: Diophantine equations and class numbers. J. Number Theory, 24, 7-19 (1986).
- [9] ——: Generalized Fibonacci primitive roots, and class numbers of real quadratic fields. Fibonacci Quart., 26, 46-53 (1988).
- [10] ——: On the insolubility of a class of diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type. Nagoya Math. J., 105, 39-47 (1987).
- [11] ——: Lower bounds for class numbers of real quadratic and biquadratic fields. Proc. Amer. Math. Soc., 101, 439-444 (1987).
- [12] R. A. Mollin and H. C. Williams: Class number one for real quadratic fields, continued fractions and reduced ideals (to appear in Proceedings of the NATO ASI on Number Theory and Applications at Banff, Canada, 1988).
- [13] —: Computation of the class number of a real quadratic field (to appear in Advances in the theory of computation and computational mathematics).
- [14] ——: A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Amer. Math. Soc., 102, 794-796 (1988).
- [15] ——: Prime producing quadratic polynomials and real quadratic fields of class number one (to appear in Proceedings of the International Number Theory Conference at Quebec, Canada, 1987).
- [16] ——: On prime valued polynomials and class numbers of real quadratic fields. Nagoya Math. J., 112, 143-151 (1988).
- [17] ——: Quadratic non-residues and prime-producing quadratic polynomials (to appear in Canad. Math. Bulletin).
- [18] ——: Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception) (to appear in Proceedings of the first conference of the Canadian Number Theory Association at Banff, Canada, 1988).
- [19] G. Rabinowitsch: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen zahlkörpern. Proc. Fifth Internat. Congress Math. (Cambridge), 1, 418–424 (1913).
- [20] ——: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Math., 142, 153-164 (1913).
- [21] C. Richaud: Sur la résolution des équations $x^2 Ay^2 = \pm 1$. Atti. Accad. Pontif. Nuovi Lincei, pp. 177–182 (1866).

No. 4]