24. Notes on Certain Analytic Functions

By Mamoru Nunokawa*) and Shigeyoshi Owa**)
(Communicated by Kôsaku Yosida, m. J. A., March 13, 1989)

1. Introduction. Let $\mathcal{A}(n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad(n \in \mathscr{N}=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$.
A function $f(z)$ belonging to the class $\mathcal{A}(1)$ is said to be starlike with respect to the origin if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \mathscr{U}) \tag{1.2}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \quad(z \in \mathcal{U}) \tag{1.3}
\end{equation*}
$$

Let $\mathscr{I}^{*}(\alpha)$ be the subclass of $\mathcal{A}(1)$ consisting of functions which satisfy

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \alpha \tag{1.4}
\end{equation*}
$$

for some $\alpha(0<\alpha \leqq 1)$ and for all $z \in \mathcal{U}$. Clearly, a function $f(z)$ belonging to the class $\mathscr{I}^{*}(\alpha)$ is starlike with respect to the origin in the unit disk \mathscr{U}.

Further, a function $f(z)$ in the class $\mathcal{A}(1)$ is said to be convex of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{1.5}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$ and for all $z \in \mathcal{U}$. We denote by $\mathcal{K}(\alpha)$ the subclass of $\mathcal{A}(1)$ consisting of all such functions.
2. Some properties. We begin with the statement of the following lemma due to Miller and Mocanu [1].

Lemma 1. Let $f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots(n \in \mathfrak{N})$ be analytic in \mathbb{C} with $f(z) \not \equiv a$. If $z_{0}=r_{0} e^{i \theta_{0}}\left(0<r_{0}<1\right)$ and

$$
\left|f\left(z_{0}\right)\right|=\max _{|z| \leq r_{0}}|f(z)|,
$$

then

$$
\begin{equation*}
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}=m \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} \geqq m \tag{2.2}
\end{equation*}
$$

where $m \geqq 1$ and

[^0]\[

$$
\begin{equation*}
m \geqq n \frac{\left|f\left(z_{0}\right)-a\right|^{2}}{\left|f\left(z_{0}\right)\right|^{2}-|a|^{2}} \geqq n \frac{\left|f\left(z_{0}\right)\right|-|a|}{\left|f\left(z_{0}\right)\right|+|a|} \tag{2.3}
\end{equation*}
$$

\]

Applying the above lemma, we derive
Theorem 1. Let a function $f(z)$ be in the class $\mathcal{A}(n)$ with $f(z) \neq 0$ for $0<|z|<1$. If $z_{0}=r_{0} e^{i \theta_{0}}\left(0<r_{0}<1\right)$ and

$$
\left|f\left(z_{0}\right)\right|=\min _{|z| \leqq r_{0}}|f(z)|,
$$

then

$$
\begin{equation*}
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}=1-m \leqq 0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} \geqq 1-m \tag{2.5}
\end{equation*}
$$

where $m \geqq 1$ and

$$
\begin{equation*}
m \geqq n \frac{\left|z_{0}-f\left(z_{0}\right)\right|^{2}}{r_{0}^{2}-\left|f\left(z_{0}\right)\right|^{2}} \geqq n \frac{r_{0}-\left|f\left(z_{0}\right)\right|}{r_{0}+\left|f\left(z_{0}\right)\right|} \tag{2.6}
\end{equation*}
$$

Proof. We define the function $g(z)$ by

$$
\begin{equation*}
g(z)=\frac{z}{f(z)} \tag{2.7}
\end{equation*}
$$

Then, by the assumption and the maximum principle, $g(z)$ is analytic in U, $g(0)=1$ and $|g(z)|$ takes its maximum value at $z=z_{0}=r_{0} e^{i \theta_{0}}$ in the closed disk $|z| \leqq r_{0}$. It follows from this that

$$
\begin{equation*}
\left|g\left(z_{0}\right)\right|=\max _{|z| \leq r_{0}}|g(z)|=\frac{\left|z_{0}\right|}{\left|f\left(z_{0}\right)\right|} \tag{2.8}
\end{equation*}
$$

Therefore, applying Lemma 1 to $g(z)$, we observe that

$$
\begin{equation*}
\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}=1-\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}=m \tag{2.9}
\end{equation*}
$$

which shows (2.4) and

$$
\begin{align*}
& \operatorname{Re}\left\{1+\frac{z_{0} g^{\prime \prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\} \tag{2.10}\\
& \quad=1-\operatorname{Re}\left\{\frac{z_{0}^{2} f^{\prime \prime}\left(z_{0}\right)}{f\left(z_{0}\right)-z_{0} f^{\prime}\left(z_{0}\right)}\right\}-2 \operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\} \\
& \quad=1-\left(\frac{1-m}{m}\right) \operatorname{Re}\left\{\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\}-2(1-m) \\
& \quad \geqq m
\end{align*}
$$

which implies (2.5), where $m \geqq 1$ and

$$
m \geqq n \frac{\left|g\left(z_{0}\right)-1\right|^{2}}{\left|g\left(z_{0}\right)\right|^{2}-1}=n \frac{\left|z_{0}-f\left(z_{0}\right)\right|^{2}}{r_{0}^{2}-\left|f\left(z_{0}^{*}\right)\right|^{2}} \geqq n \frac{r_{0}-\left|f\left(z_{0}\right)\right|}{r_{0}+\left|f\left(z_{0}\right)\right|}
$$

This completes the assertion of Theorem 1.
Noting that if $f(z) \in \mathcal{A}(n)$ is univalent in $Ч$, then $f(z) \neq 0$ for $0<|z|<1$, we have

Corollary 1. Let a function $f(z)$ in the class $\mathcal{A}(n)$ be analytic and
univalent in \mathcal{U}. If $z_{0}=r_{0} e^{i \theta_{0}}\left(0<r_{0}<1\right)$ and

$$
\left|f\left(z_{0}\right)\right|=\min _{|z| \leqq r_{0}}|f(z)|
$$

then

$$
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}=1-m \leqq 0
$$

and

$$
\operatorname{Re}\left\{1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} \geqq 1-m,
$$

where $m \geqq 1$ and

$$
m \geqq n \frac{\left|z_{0}-f\left(z_{0}\right)\right|^{2}}{r_{0}^{2}-\left|f\left(z_{0}\right)\right|^{2}} \geqq n \frac{r_{0}-\left|f\left(z_{0}\right)\right|}{r_{0}+\left|f\left(z_{0}\right)\right|} .
$$

In order to show next property, we have to recall here the following lemma due to Sheil-Small [3].

Lemma 2. Let $f(z) \in \mathcal{A}(1)$ be starlike with respect to the origin, $C(r, \theta)=\left\{f\left(t e^{i \theta}\right): 0 \leqq t \leqq r\right\}$, and $T(r, \theta)$ be the total variation of $\arg \left\{f\left(t e^{i \theta}\right)\right\}$ on $C(r, \theta)$, so that

$$
\begin{equation*}
T(r, \theta)=\int_{0}^{r}\left|\frac{\partial}{\partial t} \arg \left\{f\left(t e^{i \theta}\right)\right\}\right| d t . \tag{2.11}
\end{equation*}
$$

Then we have

$$
T(r, \theta)<\pi .
$$

With the aid of Lemma 2, we prove
Theorem 2. If $f(z) \in \mathcal{A}(1)$ belongs to the class $\mathcal{K}(\alpha)$ with $(1 / 2) \leqq \alpha<1$, then $f(z) \in \mathscr{I}^{*}(2(1-\alpha))$, or $\mathcal{K}(\alpha) \subseteq I^{*}(2(1-\alpha))$ for $(1 / 2) \leqq \alpha<1$.

Proof. For a function $f(z)$ belonging to the class $\mathcal{K}(\alpha)((1 / 2) \leqq \alpha<1)$ we define the function $g(z)$ by

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\alpha+(1-\alpha) \frac{z g^{\prime}(z)}{g(z)} \tag{2.12}
\end{equation*}
$$

Then we see that $g(z)$ is starlike with respect to the origin in \mathcal{U}. With an easy calculation, (2.12) leads to

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\left\{\int_{0}^{z}\left(\frac{z}{\zeta}\right)^{1-\alpha}\left(\frac{g(\zeta)}{g(z)}\right)^{1-\alpha} \frac{d \zeta}{z}\right\}^{-1} \tag{2.13}
\end{equation*}
$$

where the integration in (2.13) is taken along the straight line segment from 0 to z. It follows from (2.13) that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\left\{\int_{0}^{1} t^{\alpha-1}\left(\frac{g(t z)}{g(z)}\right)^{1-\alpha} d t\right\}^{-1} \tag{2.14}
\end{equation*}
$$

An application of Lemma 2 implies that

$$
\begin{equation*}
\left|\arg \left(\frac{g(t z)}{g(z)}\right)\right|<\pi \quad(z \in \mathcal{Q}) \tag{2.15}
\end{equation*}
$$

where $0 \leqq t \leqq 1$. Letting

$$
\begin{equation*}
s=t^{\alpha-1}\left(\frac{g(t z)}{g(z)}\right)^{1-\alpha} \tag{2.16}
\end{equation*}
$$

(2.14) implies that

$$
\begin{equation*}
\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)=-\arg \left(\int_{0}^{1} s d t\right) \tag{2.17}
\end{equation*}
$$

Since, from (2.15) and (2.16),
(2.18)
$|\arg (s)|<\pi(1-\alpha)$,
we have
(2.19)

$$
\left|\arg \left(\int_{0}^{1} s d t\right)\right|<\pi(1-\alpha) \quad(z \in \mathcal{U})
$$

by the property of the integral mean (see e.g., [2, Lemma 1]). This proves that

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\pi(1-\alpha) \quad(z \in \mathcal{U}) \tag{2.20}
\end{equation*}
$$

that is, that $f(z) \in \mathscr{I} *(2(1-\alpha))$.
Taking $\alpha=1 / 2$ in Theorem 2, we have
Corollary 2. If $f(z) \in \mathcal{A}(1)$ belongs to the class $\mathcal{K}(1 / 2)$, then $f(z) \in$ $\mathscr{I}^{*}(1)$, or

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \quad(z \in \mathscr{U})
$$

References

[1] S. S. Miller and P. T. Mocanu: Second order differential inequalities in the complex plane. J. Math. Anal. Appl., 65, 289-305 (1978).
[2] Ch. Pommerenke: On close-to-convex analytic functions. Trans. Amer. Math. Soc., 114, 176-186 (1965).
[3] T. Sheil-Small: Some conformal mapping inequalities for starlike and convex functions. J. London Math. Soc., 1, 577-587 (1969).

[^0]: *) Department of Mathematics, Gunma University.
 **) Department of Mathematics, Kinki University.

