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1. Introduction. Consider the following system of ordinary differ-
ential equations, (N), and its perturbed system, (P)"
(N) 2=f(t, x),
(P) f(t, y) + g(t, y),
where f(t, x) is continuous, a Lipschitzian with respect to x and f(t, 0)--0.
Moreover, g(t, y) is continuous and g(t, 0)--0. On (N), we assume that the
zero solution, x-O, has some properties on the stability.

Many authors have studied above systems under the conditions on
g(t, y)so that (P) preserves the stability of (N) (cf. tIahn [1], Yoshizawa
[2], Strauss and Yorke [3], [4], etc.). In this paper, we give an attention
to the exponentially asymptotic stability. A well-known result on this
stability is as follows"

Theorem 1.1. Suppose that the zero solution of (N) is exponentially
asymptotically stable. Moreover, suppose that IIg(t, Y)l]u(t)lly] in some

sets and [: u(t)dt / c. Then the zero solution o.f (P) is exponentially

asymptotically stable.
Our purpose in this paper is to extend conditions on u(t) to more gen-

eral ones.
2. Definitions and lemrnas. Let R be the n-dimensionl real Eu-

clidean space and II’ll denotes the norm on R. Let B--(x e
for any h>0, and let R/={teR t>_0}. C[X; Y] denotes the set of all
continuous functions from X to Y, where X and Y are topological spaces.
We also write C[X] instead of C[X Y]. Let Lip (x, L, D) {f e C[R D]"
Ilf(t, x)--f(t, x’)]]<_LI] x- x’ in R D}, where D is a domain in R, and
x(. t0, x0), y(. ;t0, Y0) denote any solutions of (N), (P) passing through
(to, x0), (to, Y0), respectively.

Definition 2.1o The zero solution of (N) is exponentially asymptoti-
cally stable ([Exp. A.S]) if there exist h>0, K>0 and c>0 such that
I]x(t to, Xo)ll_Kllxo]l exp (-c(t-to)) or all (to, x0) e R B and t_ to.

If the zero solution of (N) is [Exp. A.S.], then we obtain the ollowing
lemmas.
Lemma 2.2. Suppose that f e C[R B R] Lip (x, L, B) and the

zero solution of (N) is [Exp. A.S]. Then there exist a Liapunov function
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V(t, x) for (N), h’O with h’h, KO, cO and MO which satisfies the
following conditions"

( ) V e C[R/B,; R/],
(ii) Ilx l_V(t, x)_KIIx in R+ B,,
(iii) ()(t, x)_ cV(t, x) in R B,, where

?()(t, x)=lim sup V(t+, x+f(t, x))-V(t, x)
-*+

(iv) IV(t, x)- V(, x’)I_M x- x’ in R B,.
Lemma 2.3. Suppose that f e C[R R R] Lip (x, L, R) and there

exist K0 and c0 such that x(t to, Xo)

_
K Xo exp (- c(t- to)) for all

(to, Xo) e R R and t_ to. Then there exist a Liapunov function V(t, x)
for (N), K’O, c’O with c’c and MO which satisfies the following
conditions"

( ) V e C[R+R; R+],
(ii) IIx [_V(t,x)_K’llxll in R+Rn,
(iii) ()(t, x)_ -c’V(t, x) in R R,
(iv) IV(t, x)- V(t, x’) I_M x- x’ in R Rn.
Proofs are omitted. Refer to Theorem 19.2 and its corollary in Yoshi-

zawa [2].
Definition 2.4. Let u(.)e C[R+;R+]. We call u(.) diminishing if

u(.) satisfies that U(t)= u(s)ds--O as t--*+ c.

Lemma 2.5. Suppose that u(.) e C[R+; R+] is diminishing and let

U(t)-- u(s)ds. Then u(s)ds_ U(s)ds for all T_t_l.

Proof is also omitted. Refer to Lemma 3.4 in Strauss and Yorke [3].

3. Theorems. As extentions of Theorem 1.1, we get the following

results.
Theorem 3.1. Suppose that f e C[R XB Rn] Lip (x, L, B) and the

zero solution of (N) is [Exp. A.S]. Moreover, suppose that g e C[R/

B R] and Ig(t, y) I_u(t)l[y[I in R B, where u(.) e C[R R/] is dimin-
ishing. Then the zero solution of (P) is [Exp. A.S].

Theorem 3.2. Suppose that fe C[R R Rn] Lip (x, L, R) and
there exist KO and cO such that I[x(t; to, Xo)[[_K[[xollexp(--c(t--to)) for
all (to, Xo) e R R and t_ to. Moreover, suppose that g e C[R R Rn]
and Ig(t, y) I_u(t) lYll in R/ R, where u(. ) e C[R R /] is diminishing.
Then there exist K’O and c’O with c’c such that IlY(t; to, yo)]l_K’llyo
exp (-c’(t- to)) for all (to, Yo) e R R and t_ to.

4. Proofs. Proof of Theorem 3.1. By the assumptions, there exists
a Liapunov function V(t, x) which satisfies the conditions in Lemma 2.2.
Then, the total derivative of V(t, x) along the system (P) satisfies
( 1 ) (,)(t, y)_-cV(t, y)+MIIg(t, y)l]_-cV(t, y)+Mu(t)llyl]_

(- c+Mu(t))V(t, y)
in R B,. Let y(t)=_ y(t to, Xo), and suppose that x(t)]

_
h’ on [to t,].
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Then, by the comparison theorem, we have

( 2 ) V(t, y(t))_V(to, Yo) exp (-c+Mu(s))ds_
K Y0 exp (- c(t- to)). exp Mu(s)ds

u(s)ds, then U(t)-+0 as t--.+ c.

on [to, t].

Thus, there exist some

constants N0 and TI such that supte/lU(t)l_N+c and MU(t)_
(1/2)c for all t_ T.

Le P(t to) M()d, and make an estimate on N(t to).

irs, assume ha 0t1. If t T, by Lemma 2.g, we have

F(; t0)=I Mu(s)ds I Mu(s)dsM Ilo u(s)ds o MU(s)ds

MN+ MU(s)ds+ MU(s)dsMN(I+T)+
MN(1+ T)+c(t- to).

For F(t; t0) is monotone increasing in and F(T; to)MN(l+ T), we have

(3) F(; o)MN(1WT)+c(--o) for all

Next, assume that 1t0 T. If t T, by Lemma 2.5, we have

to to-1

-1

I e(t--N( + +
or he same reason as the firs ease, we have the same estimate as ().

inally, assume ha Tto. hen we have

I 1 C(t--M
o-

U(s)ds +
o
MU(s)dsMN+

MN(l+T)+c(t-to) for all

By the above estimates, we have
1 c(t- to) for all t) t0) 0( 4 ) F(t; to)MN(l+T)+

Therefore, by (2) and the condition (ii) of Lemma 2.’2, we have

y(t) V(t, y(t))KYo exp (-- c(t-- t)) exp (MN(I+ T)+c(t-- t0)}
(Iv(t--to)) on [to, t]=K’ Y0 exp

where K’K exp (MN(1+ T)).
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Let h"---(h’/K’), then we have ]y(t to, Yo)II_K’IlYoll exp (--(1/2)c(t--to))
for all (to, Y0)e R/B,, and t_to. This implies [Exp. A.S] of the zero
solution of (P) and completes the proof. Q.E.D.

Proof of Theorem 3.2. By the assumptions, there exists a Liapunov
function V(t, x) which satisfies the conditions of Lemma 2.3. Then, by the
same way as the proof of Theorem 3.1, we have

y(t to, Yo)"K’ l’Yo" exp (----c’(t-to))
for all (t0, y0) eR/XR and t>_t0

and this completes the proof. Q.E.D.
Remark. Consider the following 1-dimensional linear ordinary dif-

ferential equation"
(i) 2 (--a-t- b(t))x,
where aO is a constant and b(.)e C[R+;R/]. The necessary and suffi-
cient condition for [Exp. A.S] of the zero solution of (L) is that a and b(.)
satisfy that

lim sup b(s)dsa.

(Onuchic [5]). By applying the comparison theorem to (1) and (L), we see
that the condition on u(.) in Theorem 3.1 and 3.2 can be replaced by

I :+u(s)ds O.lim (sp) vt, v)-
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