23. On the Exponentially Asymptotic Stability of a Perturbed Nonlinear System

By Takashi Ohe and Minoru Yamamoto
Department of Applied Physics, Faculty of Engineering, Osaka University

(Communicated by Kôsaku Yosida, m. J. A., March 13, 1989)

1. Introduction. Consider the following system of ordinary differential equations, (N), and its perturbed system, (P) :
$\dot{x}=f(t, x)$,
$\dot{y}=f(t, y)+g(t, y)$,
(P)

$$
\begin{equation*}
\dot{y}=f(t, y)+g(t, y) \tag{N}
\end{equation*}
$$

where $f(t, x)$ is continuous, a Lipschitzian with respect to x and $f(t, 0)=0$. Moreover, $g(t, y)$ is continuous and $g(t, 0)=0$. On (N), we assume that the zero solution, $x=0$, has some properties on the stability.

Many authors have studied above systems under the conditions on $g(t, y)$ so that (P) preserves the stability of (N) (cf. Hahn [1], Yoshizawa [2], Strauss and Yorke [3], [4], etc.). In this paper, we give an attention to the exponentially asymptotic stability. A well-known result on this stability is as follows:

Theorem 1.1. Suppose that the zero solution of (N) is exponentially asymptotically stable. Moreover, suppose that $\|g(t, y)\| \leqq u(t)\|y\|$ in some sets and $\int_{0}^{\infty} u(t) d t<+\infty$. Then the zero solution of (P) is exponentially asymptotically stable.

Our purpose in this paper is to extend conditions on $u(t)$ to more general ones.
2. Definitions and lemmas. Let R^{n} be the n-dimensionl real Euclidean space and $\|\cdot\|$ denotes the norm on R^{n}. Let $B_{h}=\left\{x \in R^{n}:\|x\| \leq h\right\}$ for any $h>0$, and let $R^{+}=\{t \in R: t \geq 0\}$. $C[X ; Y]$ denotes the set of all continuous functions from X to Y, where X and Y are topological spaces. We also write $C[X]$ instead of $C[X ; Y]$. Let Lip $(x, L, D)=\left\{f \in C\left[R^{+} \times D\right]\right.$: $\left\|f(t, x)-f\left(t, x^{\prime}\right)\right\| \leq L\left\|x-x^{\prime}\right\|$ in $\left.R^{+} \times D\right\}$, where D is a domain in R^{n}, and $x\left(\cdot ; t_{0}, x_{0}\right), y\left(\cdot ; t_{0}, y_{0}\right)$ denote any solutions of $(N),(P)$ passing through $\left(t_{0}, x_{0}\right),\left(t_{0}, y_{0}\right)$, respectively.

Definition 2.1. The zero solution of (N) is exponentially asymptotically stable ([Exp. A.S]) if there exist $h>0, K>0$ and $c>0$ such that $\left\|x\left(t ; t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\| \exp \left(-c\left(t-t_{0}\right)\right)$ for all $\left(t_{0}, x_{0}\right) \in R^{+} \times B_{n}$ and $t \geq t_{0}$.

If the zero solution of (N) is [Exp. A.S.], then we obtain the following lemmas.

Lemma 2.2. Suppose that $f \in C\left[R^{+} \times B_{h} ; R^{n}\right] \cap \operatorname{Lip}\left(x, L, B_{h}\right)$ and the zero solution of (N) is [Exp. A.S]. Then there exist a Liapunov function
$V(t, x)$ for $(N), h^{\prime}>0$ with $h^{\prime}<h, K>0, c>0$ and $M>0$ which satisfies the following conditions:
(i) $V \in C\left[R^{+} \times B_{n^{\prime}} ; R^{+}\right]$,
(ii) $\|x\| \leq V(t, x) \leq K\|x\|$ in $R^{+} \times B_{h^{\prime}}$,
(iii) $\quad \dot{V}_{(N)}(t, x) \leq-c V(t, x)$ in $R^{+} \times B_{h^{\prime}}$, where

$$
\dot{V}_{(N)}(t, x)=\limsup _{\delta \rightarrow+0} \frac{V(t+\delta, x+\delta f(t, x))-V(t, x)}{\delta},
$$

(iv) $\left|V(t, x)-V\left(t, x^{\prime}\right)\right| \leq M\left\|x-x^{\prime}\right\|$ in $R^{+} \times B_{h^{\prime}}$.

Lemma 2.3. Suppose that $f \in C\left[R^{+} \times R^{n} ; R^{n}\right] \cap \operatorname{Lip}\left(x, L, R^{n}\right)$ and there exist $K>0$ and $c>0$ such that $\left\|x\left(t ; t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\| \exp \left(-c\left(t-t_{0}\right)\right)$ for all $\left(t_{0}, x_{0}\right) \in R^{+} \times R^{n}$ and $t \geq t_{0}$. Then there exist a Liapunov function $V(t, x)$ for (N), $K^{\prime}>0, c^{\prime}>0$ with $c^{\prime}<c$ and $M>0$ which satisfies the following conditions:
(i) $V \in C\left[R^{+} \times R^{n} ; R^{+}\right]$,
(ii) $\|x\| \leq V(t, x) \leq K^{\prime}\|x\|$ in $R^{+} \times R^{n}$,
(iii) $\quad \dot{V}_{(N)}(t, x) \leq-c^{\prime} V(t, x)$ in $R^{+} \times R^{n}$,
(iv) $\left|V(t, x)-V\left(t, x^{\prime}\right)\right| \leq M\left\|x-x^{\prime}\right\|$ in $R^{+} \times R^{n}$.

Proofs are omitted. Refer to Theorem 19.2 and its corollary in Yoshizawa [2].

Definition 2.4. Let $u(\cdot) \in C\left[R^{+} ; R^{+}\right]$. We call $u(\cdot)$ diminishing if $u(\cdot)$ satisfies that $U(t) \equiv \int_{t}^{t+1} u(s) d s \rightarrow 0$ as $t \rightarrow+\infty$.

Lemma 2.5. Suppose that $u(\cdot) \in C\left[R^{+} ; R^{+}\right]$is diminishing and let $U(t) \equiv \int_{t}^{t+1} u(s) d s$. Then $\int_{t}^{T} u(s) d s \leq \int_{t-1}^{T} U(s) d s$ for all $T \geq t \geq 1$.

Proof is also omitted. Refer to Lemma 3.4 in Strauss and Yorke [3].
3. Theorems. As extentions of Theorem 1.1, we get the following results.

Theorem 3.1. Suppose that $f \in C\left[R^{+} \times B_{h} ; R^{n}\right] \cap \operatorname{Lip}\left(x, L, B_{n}\right)$ and the zero solution of (N) is [Exp. A.S]. Moreover, suppose that $g \in C\left[R^{+} \times\right.$ $\left.B_{n} ; R^{n}\right]$ and $\|g(t, y)\| \leq u(t)\|y\|$ in $R^{+} \times B_{n}$, where $u(\cdot) \in C\left[R^{+} ; R^{+}\right]$is diminishing. Then the zero solution of (P) is [Exp. A.S].

Theorem 3.2. Suppose that $f \in C\left[R^{+} \times R^{n} ; R^{n}\right] \cap \operatorname{Lip}\left(x, L, R^{n}\right)$ and there exist $K>0$ and $c>0$ such that $\left\|x\left(t ; t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\| \exp \left(-c\left(t-t_{0}\right)\right)$ for all $\left(t_{0}, x_{0}\right) \in R^{+} \times R^{n}$ and $t \geq t_{0}$. Moreover, suppose that $g \in C\left[R^{+} \times R^{n} ; R^{n}\right]$ and $\|g(t, y)\| \leq u(t)\|y\|$ in $R^{+} \times R^{n}$, where $u(\cdot) \in C\left[R^{+} ; R^{+}\right]$is diminishing. Then there exist $K^{\prime}>0$ and $c^{\prime}>0$ with $c^{\prime}<c$ such that $\left\|y\left(t ; t_{0}, y_{0}\right)\right\| \leq K^{\prime}\left\|y_{0}\right\|$ $\exp \left(-c^{\prime}\left(t-t_{0}\right)\right)$ for all $\left(t_{0}, y_{0}\right) \in R^{+} \times R^{n}$ and $t \geq t_{0}$.
4. Proofs. Proof of Theorem 3.1. By the assumptions, there exists a Liapunov function $V(t, x)$ which satisfies the conditions in Lemma 2.2. Then, the total derivative of $V(t, x)$ along the system (P) satisfies

$$
\begin{align*}
\dot{V}_{(P)}(t, y) & \leq-c V(t, y)+M\|g(t, y)\| \leq-c V(t, y)+M u(t)\|y\| \tag{1}\\
& \leq(-c+M u(t)) V(t, y)
\end{align*}
$$

in $R^{+} \times B_{h^{\prime}}$. Let $y(t) \equiv y\left(t ; t_{0}, x_{0}\right)$, and suppose that $\|x(t)\| \leq h^{\prime}$ on $\left[t_{0} ; t_{1}\right]$.

Then, by the comparison theorem, we have
(2) $\quad V(t, y(t)) \leq V\left(t_{0}, y_{0}\right) \exp \left\{\int_{t_{0}}^{t}(-c+M u(s)) d s\right\}$

$$
\leq K\left\|y_{0}\right\| \exp \left(-c\left(t-t_{0}\right)\right) \cdot \exp \left(\int_{t_{0}}^{t} M u(s) d s\right) \quad \text { on }\left[t_{0}, t_{1}\right]
$$

Let $U(t) \equiv \int_{t}^{t+1} u(s) d s$, then $U(t) \rightarrow 0$ as $t \rightarrow+\infty$. Thus, there exist some constants $N>0$ and $T>1$ such that $\sup _{t \in R^{+}}|U(t)| \leq N<+\infty$ and $M U(t)$ $\leq(1 / 2) c$ for all $t \geq T$.

Let $F\left(t ; t_{0}\right) \equiv \int_{t_{0}}^{t} M u(s) d s$, and make an estimate on $F\left(t ; t_{0}\right)$.
First, assume that $0 \leq t_{0} \leq 1$. If $t \geq T$, by Lemma 2.5, we have

$$
\begin{aligned}
F\left(t ; t_{0}\right) & =\int_{t_{0}}^{1} M u(s) d s+\int_{1}^{t} M u(s) d s \leq M \int_{0}^{1} u(s) d s+\int_{0}^{t} M U(s) d s \\
& \leq M N+\int_{0}^{T} M U(s) d s+\int_{T}^{t} M U(s) d s \leq M N(1+T)+\frac{1}{2} c(t-T) \\
& \leq M N(1+T)+\frac{1}{2} c\left(t-t_{0}\right) .
\end{aligned}
$$

For $F\left(t ; t_{0}\right)$ is monotone increasing in t and $F\left(T ; t_{0}\right) \leq M N(1+T)$, we have

$$
\begin{equation*}
F\left(t ; t_{0}\right) \leq M N(1+T)+\frac{1}{2} c\left(t-t_{0}\right) \quad \text { for all } t \geq t_{0} . \tag{3}
\end{equation*}
$$

Next, assume that $1 \leq t_{0} \leq T$. If $t \geq T$, by Lemma 2.5, we have

$$
\begin{aligned}
F\left(t ; t_{0}\right) & =\int_{t_{0}}^{t} M u(s) d s \leq \int_{t_{0}-1}^{t} M U(s) d s \\
& \leq M \int_{t_{0}-1}^{T} U(s) d s+\int_{T}^{t} M U(s) d s \leq M N\left(T-t_{0}+1\right)+\frac{1}{2} c(t-T) \\
& \leq M N(1+T)+\frac{1}{2} c\left(t-t_{0}\right) .
\end{aligned}
$$

For the same reason as the first case, we have the same estimate as (3).
Finally, assume that $T \leq t_{0}$. Then we have

$$
\begin{aligned}
F\left(t ; t_{0}\right) & =\int_{t_{0}}^{t} M u(s) d s \leq \int_{t_{0}-1}^{t} M U(s) d s \\
& =M \int_{t_{0}-1}^{t_{0}} U(s) d s+\int_{t_{0}}^{t} M U(s) d s \leq M N+\frac{1}{2} c\left(t-t_{0}\right) \\
& \leq M N(1+T)+\frac{1}{2} c\left(t-t_{0}\right) \quad \text { for all } t \geq t_{0} .
\end{aligned}
$$

By the above estimates, we have

$$
\begin{equation*}
F\left(t ; t_{0}\right) \leq M N(1+T)+\frac{1}{2} c\left(t-t_{0}\right) \quad \text { for all } t \geq t_{0} \geq 0 . \tag{4}
\end{equation*}
$$

Therefore, by (2) and the condition (ii) of Lemma 2.2, we have

$$
\begin{aligned}
\|y(t)\| \leq V(t, y(t)) & \leq K\left\|y_{0}\right\| \exp \left(-c\left(t-t_{n}\right)\right) \cdot \exp \left\{M N(1+T)+\frac{1}{2} c\left(t-t_{0}\right)\right\} \\
& =K^{\prime}\left\|y_{0}\right\| \exp \left(-\frac{1}{2} c\left(t-t_{0}\right)\right) \quad \text { on }\left[t_{0}, t_{1}\right]
\end{aligned}
$$

where $K^{\prime} \equiv K \exp (M N(1+T))$.

Let $h^{\prime \prime}=\left(h^{\prime} \mid K^{\prime}\right)$, then we have $\left\|y\left(t ; t_{0}, y_{0}\right)\right\| \leq K^{\prime}\left\|y_{0}\right\| \exp \left(-(1 / 2) c\left(t-t_{0}\right)\right)$ for all $\left(t_{0}, y_{0}\right) \in R^{+} \times B_{h^{\prime \prime}}$ and $t \geq t_{0}$. This implies [Exp. A.S] of the zero solution of (P) and completes the proof.
Q.E.D.

Proof of Theorem 3.2. By the assumptions, there exists a Liapunov function $V(t, x)$ which satisfies the conditions of Lemma 2.3. Then, by the same way as the proof of Theorem 3.1, we have

$$
\begin{gathered}
\left\|y\left(t ; t_{0}, y_{0}\right)\right\| \leq K^{\prime}\left\|y_{0}\right\| \exp \left(-\frac{1}{2} c^{\prime}\left(t-t_{0}\right)\right) \\
\text { for all }\left(t_{0}, y_{0}\right) \in R^{+} \times R^{n} \quad \text { and } \quad t \geq t_{0}
\end{gathered}
$$

and this completes the proof.
Q.E.D.

Remark. Consider the following 1-dimensional linear ordinary differential equation:
(L)

$$
\dot{x}=(-a+b(t)) x
$$

where $a>0$ is a constant and $b(\cdot) \in C\left[R^{+} ; R^{+}\right]$. The necessary and sufficient condition for [Exp. A.S] of the zero solution of (L) is that a and $b(\cdot)$ satisfy that

$$
\limsup _{(t, v) \rightarrow(\infty, \infty)} \frac{1}{v} \int_{t}^{t+v} b(s) d s<a
$$

(Onuchic [5]). By applying the comparison theorem to (1) and (L), we see that the condition on $u(\cdot)$ in Theorem 3.1 and 3.2 can be replaced by

$$
\limsup _{(t, v) \rightarrow(\infty, \infty)} \frac{1}{v} \int_{t}^{t+v} u(s) d s=0 .
$$

References

[1] W. Hahn: Stability of Motion. Springer-Verlag, New York (1969).
[2] T. Yoshizawa: Stability Theory by Liapunov's Second Method. Math. Soc. Japan, Tokyo (1966).
[3] A. Strauss and J. A. Yorke: Perturbation theorems for ordinary differential equations. J. Diff. Eqs., 3, 15-30 (1967).
[4] A. Strauss and J. A. Yorke: Perturbing uniform asymptotically stable nonlinear systems. ibid., 6, 452-483 (1969).
[5] N. Onuchic: Asymptotic behavior of a perturbed linear differential equation with time lag on a product space. Ann. Mat. Pura Appl., 86, 115-123 (1970).

