3. Sums of a Certain Class of q-series

By H. M. Srivastava ${ }^{\text {t) }}$
Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)
M. Vowe and H.-J. Seiffert [6] evaluated the sum :

$$
\begin{array}{r}
\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} \frac{1}{2^{k}(n+k+1)}=\frac{2^{n}(n-1)!n!}{(2 n)!}-\frac{2^{-n}}{n} \tag{1}\\
(n \in N=\{1,2,3, \cdots\})
\end{array}
$$

by identifying it with an Eulerian integral. Subsequently, in our attempt in [4] to find the sum (1), without considering this Eulerian integral, we were led naturally to numerous interesting generalizations of (1) obtainable as useful consequences of Kummer's summation theorem [3, p. 134, Theorem 3] in the theory of the familiar (Gaussian) hypergeometric series (see [4] for details). The object of the present note is to derive certain basic (or q-) extensions of (1) and of its various generalizations given already by us [4].

For real or complex $q,|q|<1$, let

$$
\begin{equation*}
(\lambda ; q)_{0}=1 ;(\lambda ; q)_{k}=(1-\lambda)(1-\lambda q) \cdots\left(1-\lambda q^{k-1}\right), \forall k \in N, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda ; q)_{\infty}=\lim _{k \rightarrow \infty}(\lambda ; q)_{k}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) \tag{3}
\end{equation*}
$$

for an arbitrary (real or complex) parameter λ. Then a q-extension of Kummer's summation theorem [3, p. 134, Theorem 3], employed in our earlier work [4], can be written in the form (cf. [1, p. 526, Equation (1.9)]) :

$$
\begin{equation*}
\sum_{k=0}^{\infty} q^{k(k-1) / 2} \frac{(a ; q)_{k}(q / a ; q)_{k}}{(c ; q)_{k}} \frac{c^{k}}{\left(q^{2} ; q^{2}\right)_{k}}=\frac{\left(c a ; q^{2}\right)_{\infty}\left(c q / a ; q^{2}\right)_{\infty}}{(c ; q)_{\infty}}, \tag{4}
\end{equation*}
$$

or, equivalently,

$$
{ }_{2} \Phi_{2}\left[\begin{array}{l}
a, q / a ; \tag{5}\\
c,-q ;
\end{array} q,-c\right]=\frac{\left(c a ; q^{2}\right)_{\infty}\left(c q / a ; q^{2}\right)_{\infty}}{(c ; q)_{\infty}}
$$

in terms of a basic (or q-) hypergeometric ${ }_{r} \Phi_{s}$ function (cf., e.g., [5, p. 347, Equation (272)]).

Defining the basic (or $q-$) binomial coefficient by

$$
\left[\begin{array}{c}
\lambda \tag{6}\\
0
\end{array}\right]=1 ; \quad\left[\begin{array}{c}
\lambda \\
k
\end{array}\right]=(-1)^{k} q^{k(2 \lambda-k+1) / 2} \frac{\left(q^{-\lambda} ; q\right)_{k}}{(q ; q)_{k}}, \quad k \in N
$$

it is easily verified that

$$
\left[\begin{array}{c}
\lambda+k-1 \tag{7}\\
k
\end{array}\right]=\frac{\left(q^{2} ; q\right)_{k}}{(q ; q)_{k}} \quad\left(k \in N_{0}=N \cup\{0\}\right)
$$

and that

[^0]\[

\lim _{q \rightarrow 1}\left[$$
\begin{array}{l}
\lambda \tag{8}\\
k
\end{array}
$$\right]=\binom{\lambda}{k} \quad\left(k \in N_{0}\right)
\]

for an arbitrary (real or complex) parameter λ.
Applying the relationship (7), it is not difficult to state the summation formula (4) or (5) in the (more relevant) form:

$$
\begin{align*}
S_{\lambda, \mu}^{(q)} & \equiv \sum_{k=0}^{\infty}(-1)^{k} q^{k(k-\lambda+\mu)}\left[\begin{array}{c}
\lambda-1 \\
k
\end{array}\right] \frac{\left[\begin{array}{c}
\lambda+k-1 \\
k
\end{array}\right]}{(-q ; q)_{k}\left[\begin{array}{c}
\mu+k-1 \\
k
\end{array}\right]} \tag{9}\\
& =\frac{(1+q)^{1-\mu} \Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{q}(\mu)}{\Gamma_{p}((\lambda+\mu) / 2) \Gamma_{p}((1-\lambda+\mu) / 2)} \quad\left(p=q^{2}\right),
\end{align*}
$$

where $\Gamma_{q}(z)$ denotes the basic (or $q-$) Gamma function defined by

$$
\begin{equation*}
\Gamma_{q}(z)=\frac{(q ; q)_{\infty}}{\left(q^{z} ; q\right)_{\infty}}(1-q)^{1-z} \tag{10}
\end{equation*}
$$

so that

$$
\begin{align*}
& \Gamma_{q}(z+1)=\left(\frac{1-q^{z}}{1-q}\right) \Gamma_{q}(z), \tag{11}\\
& \Gamma_{q}(n+1)=\frac{(q ; q)_{n}}{(1-q)^{n}} \quad\left(n \in N_{0}\right), \tag{12}
\end{align*}
$$

and, in terms of the familiar Gamma function,

$$
\begin{equation*}
\lim _{q \rightarrow 1} \Gamma_{q}(z)=\Gamma(z) . \tag{13}
\end{equation*}
$$

Furthermore, since*) [2, p. 131, Equation (3.17)]

$$
\begin{equation*}
\Gamma_{q}(2 z) \Gamma_{p}\left(\frac{1}{2}\right)=(1+q)^{2 z-1} \Gamma_{p}(z) \Gamma_{p}\left(z+\frac{1}{2}\right) \quad\left(p=q^{2}\right) \tag{14}
\end{equation*}
$$

the sum in (9) can easily be written in the following alternative form:

$$
\begin{equation*}
S_{\lambda, \mu}^{(\alpha)}=\frac{\Gamma_{p}(\mu / 2) \Gamma_{p}((\mu+1) / 2)}{\Gamma_{p}((\lambda+\mu) / 2) \Gamma_{p}((1-\lambda+\mu) / 2)} \quad\left(p=q^{2}\right) . \tag{15}
\end{equation*}
$$

We now turn to the derivation of several interesting consequences of the general result (9) or (15). Indeed, for $\mu=\lambda+2 l$ and $\mu=\lambda+2 l+1\left(l \in N_{0}\right)$, we find from (9) that

$$
\begin{align*}
& \sum_{k=0}^{\infty}(-1)^{k} q^{k(k+2 l)}\left[\begin{array}{c}
\lambda-1 \\
k
\end{array}\right]\left\{(-q ; q)_{k}\left(q^{\lambda+k} ; q\right)_{2 l}\right\}^{-1} \\
&=\frac{(1+q)^{1-\lambda} \Gamma_{p}(l+1) \Gamma_{q}(\lambda)}{(1-q)^{2 l} \Gamma_{p}(\lambda+l) \Gamma_{q}(2 l+1)} \quad\left(l \in N_{0} ; p=q^{2}\right) \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=0}^{\infty}(-1)^{k} q^{k(k+2 l+1)}\left[\begin{array}{c}
\lambda-1 \\
k
\end{array}\right]\left\{(-q ; q)_{k}\left(q^{\lambda+\kappa} ; q\right)_{2 l+1}\right\}^{-1} \\
&=\frac{(1+q)^{\lambda} \Gamma_{q}(\lambda) \Gamma_{p}(\lambda+l+1)}{(1-q)^{2 l+1} \Gamma_{q}(2 \lambda+2 l+1) \Gamma_{p}(l+1)} \quad\left(l \in N_{0} ; p=q^{2}\right) . \tag{17}
\end{align*}
$$

Multiplying both sides of (16) by $(1-q) q^{\lambda+2 l-2}$, and subtracting the resulting equation from (17) with l replaced by $l-1$, we obtain

[^1]\[

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(-1)^{k} q^{k(k+2 l-1)}\left[\begin{array}{c}
\lambda-1 \\
k
\end{array}\right] \frac{1-q^{\lambda+k+2 l-2}}{(-q ; q)_{k}\left(q^{2+k} ; q\right)_{2 l}} \\
&=\frac{\Gamma_{q}(\lambda)}{(1-q)^{2 l-1}}\left\{\frac{(1+q)^{2} \Gamma_{p}(\lambda+l)}{\Gamma_{q}(2 \lambda+2 l-1) \Gamma_{p}(i)}-\frac{q^{\lambda+2 l-2}(1+q)^{1-\lambda} \Gamma_{p}(l+1)}{\Gamma_{p}(\lambda+l) \Gamma_{q}(2 l+1)}\right\} \\
&\left(l \in N ; p=q^{2}\right) .
\end{aligned}
$$
\]

From the definitions (2) and (6), it follows readily that

$$
\left[\begin{array}{c}
n-1 \tag{19}\\
k
\end{array}\right]=0 \quad(k=n, n+1, n+2, \cdots) .
$$

Thus, in the special case when $\lambda=n \in N$, each of the sums in (9) onwards would terminate at $k=n-1$, and we find from (18) and (12) that

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k} q^{k(k+2 l+1)}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \frac{1-q^{n+k+2 l-2}}{(-q ; q)_{k}\left(q^{n+k} ; q\right)_{2 l}} \\
&=\frac{(q ; q)_{n-1}\left(q^{2} ; q^{2}\right)_{n+l-1}}{(q ; q)_{2 n+2 l-2}\left(q^{2} ; q^{2}\right)_{l-1}}-\frac{(1-q) q^{n+2 l-2}\left(q^{2} ; q^{2}\right)_{l}}{(-q ; q)_{n+l-1}(q ; q)_{2 l}\left(q^{n} ; q\right)_{l}} \quad(l, n \in N) \tag{20}
\end{align*}
$$

In particular, this last result (20) for $l=1$ yields

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k} q^{k(k+1)}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]^{\left(1-q^{n+k+1}\right)(-q ; q)_{k}} \\
& \quad=\frac{(q ; q)_{n}\left(q^{2} ; q^{2}\right)_{n}}{(q ; q)_{2 n}}-\frac{q^{n}}{(-q ; q)_{n}} \quad(n \in N) \tag{21}
\end{align*}
$$

or, equivalently,

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k} q^{k(k+1)}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\left\{\left(1-q^{n+k+1}\right)(-q ; q)_{k}\right\}^{-1} \\
&=\frac{\left(q^{2} ; q^{2}\right)_{n}}{\left(q^{n} ; q\right)_{n+1}}-\frac{q^{n}}{\left(1-q^{n}\right)(-q ; q)_{n}} \quad(n \in N) \tag{22}
\end{align*}
$$

Formula (21) or (22) provides a q-extension of the Vowe-Seiffert sum (1); in fact, in the limit when $q \rightarrow 1$, (21) reduces immediately to (1). Formulas (16), (17), (18), and (20), on the other hand, provide q-extensions of our earlier results [4, p. 57, Equations (18) to (21)].

Finally, we record the following rather simple consequences of the general result (9) with $\lambda=n-1(n \in N)$:

$$
\begin{gather*}
\sum_{k=0}^{n-1}(-1)^{k} q^{k 2}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\left\{(-q ; q)_{k}\right\}^{-1}=\left\{(-q ; q)_{n-1}\right\}^{-1} \quad(n \in N), \tag{23}\\
\sum_{k=0}^{n-1}(-1)^{k} q^{k(k+1)}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\left\{\left(1-q^{n+k}\right)(-q ; q)_{k}\right\}^{-1}=\frac{\left(q^{2} ; q^{2}\right)_{n}}{\left(q^{n} ; q\right)_{n+1}} \quad(n \in N), \tag{24}
\end{gather*}
$$

and

$$
\begin{gather*}
\sum_{k=0}^{n-1}(-1)^{k} q^{k(k+2)}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\left\{\left(1-q^{n+k}\right)\left(1-q^{n+k+1}\right)(-q ; q)_{k}\right\}^{-1} \tag{25}\\
=\left\{(1-q)\left(1-q^{n}\right)(-q ; q)_{n}\right\}^{-1} \quad(n \in N) .
\end{gather*}
$$

The sum of the q-series in (21) or (22) would follow readily upon multiplying both sides of (25) by ($1-q$) q^{n} and subtracting the resulting equation from (24). Formula (23), on the other hand, is an interesting companion of the basic (or q-) binomial theorem :

$$
\sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}
n \tag{26}\\
k
\end{array}\right] a^{k} b^{n-k}=b^{n}(-a / b ; q)_{n} \quad\left(n \in N_{0}\right)
$$

or, more generally,

$$
\sum_{k=0}^{\infty} q^{k(k-2 \lambda-1) / 2}\left[\begin{array}{l}
\lambda \tag{27}\\
k
\end{array}\right] z^{k}=\frac{\left(-z q^{-\lambda} ; q\right)_{\infty}}{(-z ; q)_{\infty}} \quad(|z|<1 ; \lambda \text { arbitrary })
$$

References

[1] G. E. Andrews: On the q-analog of Kummer's theorem and applications. Duke Math. J., 40, 525-528 (1973).
[2] R. Askey: The q-Gamma and q-Beta functions. Applicable Anal., 8, 125-141 (1978).
[3] E. E. Kummer: Über die bypergeometrische Reihe.... J. Reine Angew. Math., 15, 39-83; 127-172 (1836).
[4] H. M. Srivastava: Sums of a certain family of series. Elem. Math., 43, 54-58 (1988).
[5] H. M. Srivastava and P. W. Karlsson: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Ltd. Chichester) , John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1985).
[6] M. Vowe and H.-J. Seiffert: Aufgabe 946. Elem. Math., 42, 111-112 (1987).

[^0]: †) This work was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

[^1]: *) Formula (14) appears in [2, p. 131, Equation (3.17)] with a misprint in the exponent of $(1+q)$.

