20. Strong Continuity of the Solution to the Ljapunov Equation XL-BX=C Relative to an Elliptic Operator L

By Takao Nambu
Department of Mathematics, Faculty of Engineering, Kumamoto University

(Communicated by Kôsaku Yosida, M. J. A., March 13, 1989)
§ 1. Introduction. An operator equation, the so called Ljapunov equation, often appears in stabilization studies of linear parabolic systems. The equation is written as $X L-B X=C$, where the operators L, B, and C are given linear operators acting in separable Hilbert spaces, and are derived from a specific boundary feedback control system [6, 7, 8]. A general stabilization scheme for an unstable parabolic equation has been established in [6]. The parabolic equation containing L as a coefficient operator is often affected by small perturbations which may be sometimes interpreted as errors in mathematical formulation of a physical system. In such a case, does the feedback scheme still work for stabilization of the perturbed equation? A study of continuity of a solution X relative to L is fundamental to answer the question. It is the purpose of the paper to examine the continuity of X. We will see in § 2 below an affirmative result on this problem.

Let us specify the operators L, B, and $C . \mathcal{L}$ will denote a strongly elliptic differential operator of order 2 in a connected bounded domain Ω of \mathbb{R}^{m} with a finite number of smooth boundaries Γ of $(m-1)$-dimension;

$$
\mathcal{L} u=-\sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{m} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u,
$$

where $a_{i j}(x)=a_{j i}(x), 1 \leq i, j \leq m$, and for some positive δ

$$
\sum_{i, j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j} \geq \delta|\xi|^{2}, \quad \xi=\left(\xi_{1}, \cdots, \xi_{m}\right), \quad x \in \Omega .
$$

Associated with \mathcal{L} is a generalized Neumann boundary operator τ;

$$
\tau u=\frac{\partial u}{\partial \nu}+\sigma(\xi) u
$$

where $\partial / \partial \nu=\sum_{i, j=1}^{m} a_{i j}(\xi) \nu_{i}(\xi) \partial / \partial x_{j}$, and $\left(\nu_{1}(\xi), \cdots, \nu_{m}(\xi)\right)$ indicates the outward normal at $\xi \in \Gamma$. Then, L is defined in $L^{2}(\Omega)$ by

$$
L u=\mathcal{L} u, \quad u \in \mathscr{D}(L)=\left\{u \in H^{2}(\Omega) ; \tau u=0 \text { on } \Gamma\right\} .
$$

All norms hereafter will be either $L^{2}(\Omega)$ - or $\mathcal{L}\left(L^{2}(\Omega)\right)$-norm unless otherwise indicated. As is well known [2], the spectrum $\sigma(L)$ lies in the interior of a parabola $\left\{\lambda=\sigma+i \tau ; \sigma=a \tau^{2}-b, \tau \in \mathbb{R}^{1}\right\}, a>0$. Second, the general structure of the operator B is specified in the following lemma:

Lemma 1.1 [6]. Let A be a positive-definite self-adjoint operator in a separable Hilbert space H_{0} with a compact resolvent. Let $\left\{\mu_{i}^{2}, \zeta_{i j} ; i \geq 1\right.$, $\left.1 \leq j \leq n_{i}(<\infty)\right\}$ denote the eigenpairs of $A\left(\mu_{i}^{2}\right.$ are labelled according to increasing order, and $\zeta_{i j}$ normalized). Define H and B as

$$
H=\mathscr{D}\left(A^{1 / 2}\right) \times H_{0},
$$

and

$$
B=\left[\begin{array}{cc}
0 & -1 \\
A & 2 a A^{1 / 2}
\end{array}\right], \quad \mathscr{D}(B)=\mathscr{D}(A) \times \mathscr{D}\left(A^{1 / 2}\right), \quad a \in(0,1)
$$

respectively. Furthermore, set

$$
\eta_{i j}^{ \pm}=\frac{1}{\sqrt{2} \mu_{i}}\left[\begin{array}{c}
\zeta_{i j} \\
-\mu_{i} \omega^{ \pm} \zeta_{i j}
\end{array}\right], \quad i \geq 1,1 \leq j \leq n_{i}, \quad \omega^{ \pm}=a \pm \sqrt{1-a^{2}} i .
$$

Then
(i) $\sigma(B)=\left\{\mu_{i} \omega^{ \pm} ; i \geq 1\right\}, 0<\mu_{1}<\mu_{2}<\cdots \rightarrow \infty$;
(ii) $B \eta_{i j}^{ \pm}=\mu_{i} \omega^{ \pm} \eta_{i j}^{ \pm}, i \geq 1,1 \leq j \leq n_{i}$; and
(iii) the set $\left\{\eta_{i j}^{ \pm} ; i \geq 1,1 \leq j \leq n_{i}\right\}$ forms a normalized Riesz basis for H.

Remark. Define a real Hilbert space \hat{H} by

$$
\hat{H}=\left\{h \in H ; h=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}}\left(h_{i j} \eta_{i j}^{+}+\overline{h_{i j}} \eta_{i j}^{-}\right), \sum_{i, j}\left|h_{i j}\right|^{2}<\infty\right\} .
$$

Then, it is easy to see that B mapps $\mathscr{D}(B) \cap \hat{H}$ onto \hat{H}.
Let c be a positive constant, and set $L_{c}=L+c$ so that $\sigma\left(L_{c}\right)$ is entirely contained in the right half-plane. Choose real-valued $w_{k} \in L^{2}(\Gamma)$, and $\xi_{k} \in$ $\hat{H}, 1 \leq k \leq N, N$ being some integer. Then, the operator C is defined as

$$
C u=-\sum_{k=1}^{N}\left\langle L_{c}^{\alpha / 2} u, w_{k}\right\rangle_{\Gamma} \xi_{k}, \quad \alpha=\frac{1}{2}+2 \varepsilon, \quad 0<\varepsilon<\frac{1}{4},
$$

where $\langle\cdot, \cdot\rangle_{\Gamma}$ indicates the inner product in $L^{2}(\Gamma)$. Physically, w_{k} 's are interpreted as weighting functions for observations located on Γ, and ξ_{k} 's as actuators of a so called compensator [6, 7, 8] in a feedback control system. The number N plays an important role in stabilization studies. Let ξ_{k} be expressed by $\sum_{i, j}\left(\xi_{i j}^{k} \eta_{i j}^{+}+\overline{\xi_{i j}^{k}} \eta_{i j}^{-}\right)$. Finally, we assume that

$$
\sigma(L) \cap \sigma(B)=\emptyset
$$

Under this assumption, we have
Theorem 1.2 [6]. The Ljapunov equation $X L-B X=C$ on $\mathscr{D}(L)$ has a unique solution $X \in \mathcal{L}\left(L^{2}(\Omega) ; H\right) \cap \mathcal{L}\left(L_{R}^{2}(\Omega) ; \hat{H}\right)^{*)}$. The solution X is expressed by

$$
\begin{gather*}
X u=\sum_{i, j} \sum_{k=1}^{N} f_{k}\left(\mu_{i} \omega^{+} ; u\right) \xi_{i j}^{k} \eta_{i j}^{+}+\sum_{i, j} \sum_{k=1}^{N} f_{k}\left(\mu_{i} \omega^{-} ; u\right) \overline{\xi_{i j}^{k}} \eta_{i j}^{-} \tag{1}\\
f_{k}(\lambda ; u)=\left\langle L_{c}^{\alpha / 2}(\lambda-L)^{-1} u, w_{k}\right\rangle_{\Gamma}, \quad 1 \leq k \leq N .
\end{gather*}
$$

When \mathcal{L} and τ are perturbed, the resultant operators will be written as

$$
\widetilde{\mathcal{L}} u=-\sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(\tilde{a}_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{m} \tilde{b}_{i}(x) \frac{\partial u}{\partial x_{i}}+\tilde{c}(x) u,
$$

and

$$
\tilde{\tau} u=\frac{\partial u}{\partial \tilde{\sim}}+\tilde{\sigma}(\xi) u=\sum_{i, j=1}^{m} \tilde{a}_{i_{j}}(\xi) \nu_{i}(\xi) \frac{\partial u}{\partial x_{j}}+\tilde{\sigma}(\xi) u
$$

respectively. Then, \tilde{L} is defined by

$$
\tilde{L} u=\tilde{\mathcal{L}} u, \quad u \in \mathscr{D}(\tilde{L})=\left\{u \in H^{2}(\Omega) ; \tilde{\tau} u=0 \text { on } \Gamma\right\} .
$$

Here, the symmetry of $\tilde{a}_{i j}$ is not generally assumed, i.e., $\tilde{a}_{i j} \neq \tilde{a}_{j i}$. The
*) $L_{R}^{2}(\Omega)$ indicates a subspace of $L^{2}(\Omega)$ consisting of real-valued functions.
strong ellipticity of \tilde{L} is ensured when $\tilde{a}_{i j}-a_{i j}$ are small enough. \tilde{X} will denote the solution to the Ljapunov equation with L replaced by \tilde{L}, i.e., $\tilde{X} \tilde{L}-B \tilde{X}=\tilde{C}=-\sum_{k=1}^{N}\left\langle\tilde{L}_{c}^{\alpha / 2} \cdot, w_{k}\right\rangle_{\Gamma} \xi_{k}$. Our goal is to show strong continuity of \tilde{X} relative to $\tilde{a}_{i j}, \tilde{b}_{i}, \tilde{c}$, and $\tilde{\sigma}$. For a control theoretic and geometric property of X, we refer the reader to [6, 7, 8].
§ 2. Main result. In order to ensure strong continuity of \tilde{X}, we assume throughout the section that $\tilde{a}_{i j}(x)$ and $\tilde{b}_{i}(x), 1 \leq i, j \leq m$, are uniformly bounded in $C^{2}(\bar{\Omega})$ and so is $\tilde{\sigma}(\xi)$ in $C^{2}(\Gamma)$. We further assume that ξ_{k} satisfy

$$
\sum_{i, j} \mu_{i}^{2 \alpha}\left|\xi_{i j}^{k}\right|^{2}<\infty, \quad 1 \leq k \leq N
$$

Then, our main result is stated as follows:
Theorem 2.1. The operator \tilde{X} strongly converges to X uniformly in every bounded set of $L^{2}(\Omega)$ if $\delta=\sum_{i, j=1}^{m}\left\|\tilde{a}_{i j}-a_{i j}\right\|_{C_{1}(\bar{\Omega})}+\sum_{i=1}^{m}\left\|\tilde{b}_{i}-b_{i}\right\|_{C_{0}(\bar{\Omega})}+$ $\|\tilde{c}-c\|_{C_{0}(\bar{\Omega})}+\|\tilde{\sigma}-\sigma\|_{C_{1(\Gamma)}}$ tends to 0 .

Outline of the proof. The operator \tilde{X} is written by (1) with $f_{k}(\lambda ; u)$ replaced by $\tilde{f}_{k}(\lambda ; u)=\left\langle\tilde{L}_{c}^{\alpha / 2}(\lambda-\tilde{L})^{-1} u, w_{k}\right\rangle_{\Gamma}$. We have to estimate the $L^{2}(\Gamma)$ norm of

$$
h(\lambda)=\tilde{L}_{c}^{\alpha / 2}(\lambda-\tilde{L})^{-1} u-L_{c}^{\alpha / 2}(\lambda-L)^{-1} u, \quad \lambda=\mu_{i} \omega^{ \pm} .
$$

Define an auxiliary operator \hat{L} by

$$
\hat{L} u=\widetilde{\mathcal{L}} u, \quad u \in \mathscr{D}(\hat{L})=\mathscr{D}(L)
$$

Note that $\hat{L}_{c}=\hat{L}+c$ is not necessarily an accretive operator. There is a sector $\bar{\Sigma}=\{\lambda=\mu-d ; \theta \leq|\arg \mu| \leq \pi\}, d>0,0<\theta<\pi / 2$, such that the resolvents $(\lambda-L)^{-1},(\lambda-\tilde{L})^{-1}$, and $(\lambda-\hat{L})^{-1}$ exist in $\bar{\Sigma}$ and satisfy

$$
\left\|(\lambda-L)^{-1}\right\|, \quad\left\|(\lambda-\tilde{L})^{-1}\right\|, \quad\left\|(\lambda-\hat{L})^{-1}\right\| \leq \frac{\mathrm{const}}{1+|\lambda|}, \quad \lambda \in \bar{\Sigma},
$$

and that $\mu_{i} \omega^{ \pm} \in \bar{\Sigma}, i \geq 1$. Here, the above constant is independent of δ, and so will be constants appearing below. As is well known [1], $\mathcal{D}\left(L_{c}^{r}\right)=\mathscr{D}\left(\tilde{L}_{c}^{r}\right)$ $=H^{2 r}(\Omega)$ if $0 \leq \gamma<3 / 4$ (constants for the equivalence relations depend on δ). A further analysis via \hat{L} shows

Lemma 2.2. If $0 \leq r<3 / 4,\left\|\tilde{L}_{c}^{r} L_{c}^{-r}\right\|$ is uniformly bounded, and $\tilde{L}_{c}^{r} L_{c}^{-r}$ strongly converges to 1 as $\delta \rightarrow 0$.

According to m-accretiveness of $\tilde{L}_{c}^{1 / 2}$ and $L_{c}^{1 / 2}$, we can show
Lemma 2.3. If $0 \leq r \leq 1 / 2,\left\|L_{c}^{r} \tilde{L}_{c}^{-r}\right\|$ is uniformly bounded. As a consequence of Lemma 2.2, $L_{c}^{\gamma} \tilde{L}_{c}^{-r}$ strongly converges to 1 as $\delta \rightarrow 0$.

Given a $g \in H^{1 / 2}(\Gamma)$, let us consider the boundary value problem

$$
\begin{equation*}
(\lambda-\widetilde{\mathcal{L}}) u=0, \quad \tilde{\tau} u=g \tag{2}
\end{equation*}
$$

Lemma 2.4. There exists a unique solution $u \in H^{2}(\Omega)$ to eqn. (2) for $\lambda \in \bar{\Sigma}$. The solution u is denoted by $\tilde{N}(\lambda) g$. Then, $\tilde{N}(\lambda)$ belongs to $\mathcal{L}\left(H^{1 / 2}(\Gamma) ; H^{2}(\Omega)\right)$, and satisfies an estimate

$$
\left\|\tilde{L}_{c}^{r} \tilde{N}(\lambda) g\right\| \leq \mathrm{const}|\lambda|^{\gamma}\|g\|_{H^{1 / 2}(\Gamma)}, \quad \lambda \in \bar{\Sigma}, \quad 0 \leq r<\frac{3}{4} .
$$

Before estimating $h(\lambda)$, let us note a relation

$$
\begin{aligned}
h(\lambda)= & -\tilde{L}_{c}^{\alpha / 2} \tilde{N}(\lambda)(\tilde{\tau}-\tau)(\lambda-\hat{L})^{-1} u+\tilde{L}_{c}^{\alpha / 2}(\lambda-L)^{-1}(\hat{L}-L)(\lambda-\hat{L})^{-1} u \\
& +\left(\tilde{L}_{c}^{\alpha / 2}-L_{c}^{\alpha / 2}\right)(\lambda-L)^{-1} u .
\end{aligned}
$$

Based on the preceding lemmas and the trace theorem [2,5], we estimate $h(\lambda)$ as

$$
\begin{aligned}
\left\|h\left(\mu_{i} \omega^{ \pm}\right)\right\|_{L^{2}(\Gamma)} \leq & \text { const } \mu_{i}^{\alpha} \delta\|u\| \\
& + \text { const }\left\|\left(\tilde{L}_{c}^{\alpha} L_{c}^{-\alpha}-\tilde{L}_{c}^{\alpha / 2} L_{c}^{-\alpha / 2}\right) L_{c}^{\alpha}\left(\mu_{i} \omega^{ \pm}-L\right)^{-1} u\right\| .
\end{aligned}
$$

By recalling that each $L_{c}^{\alpha}\left(\mu_{i} \omega^{ \pm}-L\right)^{-1}$ is a compact operator, the second term of the above right-hand side converges to 0 uniformly in $i \geq 1$ and in u (in a bounded set of $L^{2}(\Omega)$). Thus, the assertion of Theorem 2.1 immediately follows. Details of the proof will appear elsewhere.

References

[1] D. Fujiwara: Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad., 43, 82-86 (1967).
[2] D. Gilberg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1977).
[3] T. Kato: A generalization of the Heinz inequality. Proc. Japan Acad., 37, 305308 (1961).
[4] S. G. Krein: Linear Differential Equations in Banach Space. Amer. Math. Soc., Providence, R. I. (1971).
[5] J. L. Lions and E. Magenes: Non-Homogeneous Boundary Value Problems and Applications. vol. 1, Springer-Verlag, New York (1972).
[6] T. Nambu: On stabilization of partial differential equations of parabolic type: Boundary observation and feedback. Funkcial. Ekvac., 28, 267-298 (1985).
[7] --: The Ljapunov equation and an application to stabilisation of one-dimensional diffusion equations. Proc. Roy. Soc. Edinburgh, Sec. A, 104, 39-52 (1986).
[8] -: An extension of stabilizing compensators for boundary control systems of parabolic type (accepted for publication in J. Dynamics and Differential Equations).
[9] M. Rosenblum: On the operator equation $B X-X A=Q$. Duke Math. J., 23, 263269 (1956).

