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1. Introduction. An operator equation, the so called Ljapunov
equation, often appears in stabilization studies of linear parabolic systems.
The equation is written as XL--BX--C, where the operators L, B, and C
are given linear operators acting in separable Hilbert spaces, and are
derived rom a specific boundary eedback control system [6, 7, 8]. A gen-
eral stabilization scheme for an unstable parabolic equation has been es-
tablished in [6]. The parabolic equation containing L as a coefficient
operator is often affected by small perturbations which may be sometimes
interpreted as errors in mathematical ormulation of a physical system.
In such a case, does the eedback scheme still work or stabilization of the
perturbed equation? A study of continuity of a solution X relative to L
is undamental to answer the question. It is the purpose of the paper to
examine the continuity of X. We will see in 2 below an affirmative re-
sult on this problem.

Let us specify the operators L, B, and C. _L will denote a strongly
elliptic differential operator of order 2 in a connected bounded domain tO
of with a finite number of smooth boundaries F of (m-1)-dimension

,= x x = x + c(x)u,

where a(x)=a(x), 1_i, ]_m, and or some positive

a(x)>_ll, =(, ..., ), x e 9.
i,j =1

Associated with _L is a generalized Neumann boundary operator ;
u= U +()u,

where 3/,=,=a(),()/x, and (,,(),...,,()) indicates the out-
ward normal at e F. Then, L is defined in L(9) by

Lu=_u, u e (L)={u e H(t) u=0 on F}.
All norms hereafter will be either L(tg)- or (L(9))-norm unless other-
wise indicated. As is well known [2], the spectrum a(L) lies in the interior
of a parabola {=a+ir; a=a:--b, e }, a>O. Second, the general struc-
ture of the operator B is specified in the following lemma"

Lemma 1.1 [6]. Let A be a positive-definite self-ad]oint operator in a
separable Hilbert space Ho with a compact resolvent. Let {/, i_1,
l_]_n ( c)} denote the eigenpairs of A (/ are labelled according to in-
creasing order, and normalized). Define H and B as
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H-(A’/2) H0,
and

2aA
_q)(B) =.q)(A) a e (0, )

respectively. Furthermore, set

Then

i> 1, l_<_]<_n, o+/- a +__ /1-- a2i.

( ) a(B)={/o+/- i>1}, 0<,</2<...--oo
(ii) =/+/-, i>1, l<]<n; and
(iii) the set {. i 1, l]n} forms a normalized Riesz basis for H.
Remark. Define a real Hilbert space by

hen, it is easy to see that B mas (B) onto .
Let e be a ositive eonstant, and set =L+ e so that a(L) is entirely

contained in the righ half-lane. Choose real-valued w e L(F), and e
IN, N being some integer. hen, the oerator C is defined as

+Cu= E (LV’u, w), = 2
2, 0,

where (.,.) indicates the inner product in L(F). Physically, w’s are
interpreted as weighting functions for observations located on F, and ’s as
actuators of a so called compensator [6, 7, 8] in a feedback control system.
The number N plays an important role in stabilization studies. Let be

(. /expressed by , -,]+). Finally, we assume that
a(L) a(B)= O.

Under this assumption, we have
Theorem 1.2 [6]. The L]apunov equation XL--BX=C on (L) has a

unique solution X (L(); H)(L() H)*. The solution X is ex-
pressed by

N N
+( 1 ) Xu= f(p+ u)+ f(zw- u),

ij k=l i,j

f(a; u)=(Lg/=(a--L)-’u, w}r, lkN.
When and r are perturbed, the resultant operators will be written

as

_u=-- . a,(x) 3u -4-, b(x) 3u
i,j=l X i=1 8Xi

+ c(x)u,

and

eu= u +()u= a(),()-_u +()u

respectively. Then, L is defined by
Lu=u, u e (L)={u e H() u=0 on F}.

Here, the symmetry of 5, is not generally assumed, i.e., 55. The

*) L(t?) indicates a subspace of L2(Q) consisting of real-valued functions.
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strong ellipticity of L is ensured when 5s-a are small enough. X will
denote the solution to the Ljapunov equation with L replaced by L, i.e.,

XL--BX-C--= (Lg., wr. Our goal is to show strong continuity
of X relative to 5, b, c, and . For a control theoretic and geometric
property of X, we refer the reader to [6, 7, 8].

2. Main result. In order to ensure strong continuity of X, we as-
sume throughout the section that 5(x) and (x), li, ]m, are uniformly
bounded in C(2) and so is a() in C(F). We further assume that satisfy

i,j

Then, our main result is stated as follows"
Theorem 2.1. The operator X strongly converges to X uniformly in

every bounded set of L() if
I[--c]co()+--a,(r) tends to O.

Outline of the proof. The operator X is written by (1) with f(; u)
replaced by (; u)=(Zg/:(2-Z)-u, w}r. We have to estimate the L(F)-
norm of

h()
Define an auxiliary operator L by

Lu=u, u e 2(L) 2(L).
Note that L=L+ c is not necessarily an accretive operator. There is a
sector X={=p-d; 0arggl}, d>0, 0<0<u/2, such that the resolvents
(--L) -, (-- L)-’, and (-L)- exist in 2 and satisfy

II(_L)_II, (_L)_

and that e X, i 1. Here, the above constant is independent of , and
so will be constants appearing below. As is well known [1], (L)=(L)
=H2(9) if 0<3/4 (constants for the equivalence relations depend on ).
A further analysis via L shows

Lemma 2.2. If 0g<3/4, llLL[rll is uniformly bounded, and LL[
strongly converges to I as 0.

According to m-accretiveness of L/: and r,/ we can show
Lemma 2.3. If 01/2, ILL:r[I is uniformly bounded. As a conse-

quence of Lemma 2.2, LL[r strongly converges to 1 as 0.
Given a g e H/2(F), let us consider the boundary value problem

( 2 ) (-)u=o, eu= g.
Lemma 2.4. There exists a unique solution u e H2(9) to eqn. (2) for

The solution u is denoted by N()g.
.(Hn(F) H(t)), and satisfies an estimate

LN()g I]_ const I g IIHII(F),

Before estimating h(), let us note a relation

Then, N() belongs to

0<_7< 3
4

h() Lg/()(-r)(-,)-’u+Lg/(-L)-’(L-L)(-L)- ’u
+(L/-L/)(--L)-lu.
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Based on the preceding lemmas and the trace theorem [2, 5], we estimate
h() as

h(/) I1)<-- const. Ilull
+ const (LL["--L/L-i"/)L(o L)-ull.

By recalling that each Lg(/ --L)- is a compact operator, the second term
of the above right-hand side converges to 0 uniformly in i_ 1 and in u (in
a bounded set of L(tg)). Thus, the assertion of Theorem 2.1 immediately
follows. Details of the proof will appear elsewhere.
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