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1. Introduction. We begin with a general theory and apply it to
Dirac operators in the last section. Let --(F}ex be a family of Fred-
holm operators parametrized by an infinite dimensional space X. We are
interested in a family (not necessarily a bundle) ot solutions of this family
of operators.

The family of solutions of operators gives rise to an infinite dimen-
sional cycle (called kernel cycle) which represents a global structure
the family of solutions. We shall estimate this cycle from below by an-
other cycle (called index cycle) determined by the index of the amily of
operators. Using essentially the vanishing theorem o Lichnerowicz [5],
we can show this index cycle is non-trivial for Dirac operators. There is
a relation between these cycles and a symplectic geometry, which will be
mentioned in forthcoming publications.

Our cycles and qr are motivated by the Catastrophe theory developped
by R. Thorn [8] and E.C. Zeeman [9]. Especially index cycles are closely
related to Thom-Boardman singularities (el. J.M. Boardman [2], F. Ronga
[7] and H. Morimoto [6]).

The method to prove the non-triviality of index cycles for Dirae oper-
ators is based on the idea of Atiyah-Jones [1]. They proved non-triviality
of characteristic cycles Z. We apply their method to index cycles taking
into consideration our estimate
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2. General estimates for cycles. Let X be an infinite dimensional
paracompact space, and let ={F}x be a continuous family of Fredholm
operators F E--+E’, x e X, here E and E’ are infinite dimensional Hilbert
spaces (or more generally Kuiper spaces). First we set,

::q,p(()---Zp,q((.$) (X e X dim (ker (F*))_> p},
where p and q are integers with p-q=k and k is the numerical index of. This cycle was studied in a general situation by U. Koshorke [4] and
its non-triviality was shown by Atiyah-Jones [1] for Dirac operators.

We are concerned with important subcycles of Zq*,p. Take filtrations of
the bundle E X, {En}, {E-n}n=l,,... such that E X=E,(E for any n.
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We define kernel cycles of F by
:(Ker ())= {x e zq*,() dim (ker (F) E-)>_ dim (ker (F))-- s+ r},

where r and s are integers with l<_r<_s<_p.
Remark. The kernel cycles ’ represent a global structure ot theP,q

family of solutions of ={F} as follows. Suppose for simplicity Xq+,+()*. Then the cohomology class associated to ,,,’q is a Hankel determinant
of Chern classes of the bundle consisting the solutions over Xq*,.

We give the following estimate for kernel cycles.

Theorem 1. There exists an infinite dimensional cycle +;:;(Ind ())
such that

,’ (Ker ())D q;:;(Ind ())p,
and such that the cohomology class represented by +;;(Ind ()) is the fol-
lowing polynomial of Chern classes C=C,(Ind ()) of the index of ",(-1)"’"q+lc (-1)"+C (-1)"+q+,+C+q-1 p+r p+q+2r-s-1

(-),1C (-1),C, (-1)"1C

Remark. The index cycle can be regarded as a version of Thom-
Bordman singularities S’ (cf., Thorn [8], Zeeman [9] and Bordman [2],
Ronga [7] and Morimoto [6]).

We shall give a brief sketch of the proof. A crucial point to find an
index cycle is a construction of a good new family of operators parame-
trized by Z,(). A view point of the Catastrophe Theory playes an im-
portant role at this point. This new family of operators is found by a
deformation of a family of operators

Z],,(ff) y =- F,
where - denotes the projection onto E-. This deformation gives rise
to a new cycle i.e., index cycle (analogous to the singularities S’ in terms
of Thom-Boardman singularities). Then it is not difficult to see that the
cohomology of this new cycle is determined by the index of if we com-
pare it with the original family ff as elements of infinite dimensional k-
theory over X and over Z,() (see Elworthy-Tromba [3]).

3. Application to a family of Dirac operators. We shall show the
p-lp-1non-triviality of the index cycle _,q (Ind ()) for the family of coupled

Dirac operators. We reduce the problem to the vanishing theorem of
Lichnerowicz [5] using the technique of increasing the instanton numbers,
the idea of which goes back to Atiyah-Jones [1].

Let P denote a principal bundle over S of instanton number k with
the structure group SU(2). Let denote the space of all the connections
on P and let denote the gauge transformation group (assumed to be
identity at some fixed point). We denote by ={}e the family of
coupled Dirac operators over P. This gives rise an element of infinite

dimensional k-theory over/. We denote again by the corresponding
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family of operators parametrized by //.
Theorem 2. Let p be an odd prime and q an integer less than

(p--l)/3. Then the cohomology class corresponding to the index cycle
p-1p_l:-l(Ind ()) is non-trivial in H*(/, Z).

In view of Theorem 1, we have:
p-lp-1Theorem : The carrier of the kernel cycle _, (Ker (_)) is not an

empty subset of /.
The proof of Theorem 2 is parallel to Atiyah-Jones [1]. The difference

is that they considered cycles Zq,,* while we have to consider subcycles
,’Z*,. As a result, the corresponding polynomial will be a little bit
more complicated. But the essence is quite similar. We should first in-
crease the instanton numbers, second restrict to the selfdual (or anti-
selfdual) connections, and finally reduce the whole argument to the
vanishing theorem of Lichnerowicz [5].
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