16. Quantum Orthogonal and Symplectic Groups and their Embedding into Quantum GL

By Mitsuhiro Takeuchi
Institute of Mathematics, University of Tsukuba
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 13, 1989)

We use quantum R matrices [3] to define quantum orthogonal and symplectic groups in the same way as quantum $G L$ and $S L$ of type A [2, 4, 7]. We also consider embedding the quantum orthogonal and symplectic groups $O_{q}(n)$ and $S p_{q}(n)$ into some q-analogues of $G L(n)$. It seems difficult to embed into $G L_{q}(n)$ of type A. We suggest there are two other types (orthogonal and symplectic) of q-analogues of $G L(n)$, and explain the embedding of $O_{q}(3)$ into $G L_{q}^{o}(3)$, the quantum $G L(3)$ of orthogonal type, in detail.

We work over a field k, and fix an element $q \neq 0$ in k. Let \mathcal{M}_{n} be the free associative k-algebra on indeterminates $x_{i j}, i, j=1, \cdots, n$, with the following bialgebra structure:

$$
\Delta\left(x_{i k}\right)=\sum_{j} x_{i j} \otimes x_{j k}, \quad \varepsilon\left(x_{i k}\right)=\delta_{i k} .
$$

Let X denote the $n \times n$ matrix ($x_{i j}$) with entries in \mathscr{M}_{n}.

1. Quantum orthogonal groups. For $1 \leq i \leq n$, put $i^{\prime}=n+1-i$ and

$$
\bar{i}= \begin{cases}i-(n / 2) & \text { if } i<i^{\prime} \\ 0 & \text { if } i=i^{\prime} \\ i-(n / 2)-1 & \text { if } i>i^{\prime}\end{cases}
$$

We assume q has a square root $q^{1 / 2}$ in k when n is odd. Let T denote the following symmetric $n^{2} \times n^{2}$ matrix.

$$
q \sum_{i \neq i^{\prime}} e_{i i} \otimes e_{i i}+\sum_{i \neq j, j^{\prime}} e_{i j} \otimes e_{j i}+\left(q-q^{-1}\right) \sum_{i<j, i \neq j^{\prime}} e_{j j} \otimes e_{i i}+\sum_{i^{\prime} \leq k} a_{i k} e_{i k} \otimes e_{i^{\prime} k^{\prime}}
$$

where $e_{i j}$ denote matrix units and

$$
a_{i k}= \begin{cases}1 & \text { if } i=i^{\prime}=k, \\ q^{-1} & \text { if } i \neq i^{\prime}=k, \\ \left(q-q^{-1}\right)\left(\delta_{i k}-q^{-i-\bar{k}}\right) & \text { if } i^{\prime}<k .\end{cases}
$$

We have

$$
(T-q)\left(T+q^{-1}\right)\left(T-q^{1-n}\right)=0 .
$$

Definition 1. Define bialgebras $M_{q}(n)$ and $A_{q}(n)$ by

$$
M_{q}(n)=\mathscr{M}_{n} /\left(X^{(2)} T=T X^{(2)}\right), \quad A_{q}(n)=M_{q}(n) /\left(X X^{\prime}=I=X^{\prime} X\right)
$$

where $X^{(2)}=(X \otimes I)(I \otimes X)$, and $X^{\prime}=\left(q^{j-i} x_{j^{\prime} i^{\prime}}\right)_{i j}$.
Proposition 2. (a) $A_{q}(n)$ is a Hopf algebra, i.e., has an antipode.
(b) If $q \neq \pm 1$, there is a central group-iike element γ in $M_{q}(n)$ such that $X X^{\prime}=\gamma I=X^{\prime} X$. The localization $M_{q}(n)\left[\gamma^{-1}\right]$ (with γ^{-1} group-like) is a Hopf algebra, and $A_{q}(n)$ coincides with the quotient Hopf algebra

$$
M_{q}(n) /(\gamma-1) .
$$

The quantum orthogonal group $O_{q}(n)$ is defined as the quantum group corresponding to the Hopf algebra $A_{q}(n)$. When $q=1$, this reduces to the classical orthogonal group.
2. Quantum symplectic groups. Definition is similar as above. We use T^{-}instead of T. Assume n is even. For $1 \leq i \leq n$, put

$$
\left\{\begin{array}{lll}
\bar{i}=i-(n / 2)-1, & \varepsilon_{i}=1 & \text { if } \bar{i}<i^{\prime}, \\
\bar{i}=i-(n / 2), & \varepsilon_{i}=-1 & \text { if } i>i^{\prime} .
\end{array}\right.
$$

We define T^{-}by the same formula as T by using

$$
a_{i k}= \begin{cases}q^{-1} & \text { if } i^{\prime}=k \\ \left(q-q^{-1}\right)\left(\delta_{i k}-\varepsilon_{i}, \varepsilon_{k} q^{-\bar{i}-\bar{k}}\right) & \text { if } i^{\prime}<k\end{cases}
$$

We have

$$
\left(T^{-}-q\right)\left(T^{-}+q^{-1}\right)\left(T^{-}+q^{-1-n}\right)=0 .
$$

Define quotient bialgebras $M_{q}^{-}(n)$ and $A_{q}^{-}(n)$ of \mathscr{M}_{n} by using T^{-}and $X^{\prime}=$ $\left(\varepsilon_{i} \varepsilon_{j} q^{j-i} x_{j^{\prime} i_{i}}\right)$ in Def. 1. Proposition 2 holds for $M_{q}^{-}(n)$ and $A_{q}^{-}(n)$. The quantum symplectic group $S p_{q}(n)$ is defined as the quantum group corresponding to the Hopf algebra $A_{q}^{-}(n)$.
3. Quantum exterior and symmetric algebras. Manin [4] uses these algebras to reformulate $G L_{q}(n)$. We define their orthogonal and symplectic analogues. Let $V=k^{n}$ with canonical base v_{1}, \cdots, v_{n}. We identify T and T^{-}as linear endomorphisms of $V \otimes V$. Assume T (resp. T^{-}) has three distinct eigenvalues $q,-q^{-1}, q^{1-n}$ (resp. $q,-q^{-1},-q^{-1-n}$). We put

$$
W_{e}=\operatorname{Ker}(T-q) \oplus \operatorname{Ker}\left(T-q^{1-n}\right), \quad W_{s}=\operatorname{Ker}\left(T+q^{-1}\right)
$$

(resp. $\quad W_{e}^{-}=\operatorname{Ker}\left(T^{-}-q\right), \quad W_{s}^{-}=\operatorname{Ker}\left(T^{-}+q^{-1}\right) \oplus \operatorname{Ker}\left(T^{-}+q^{-1-n}\right)$).
Definition 3. We put

$$
\begin{array}{lll}
& \bigwedge_{q}(V)=T(V) /\left(W_{e}\right), & S_{q}(V)=T(V) /\left(W_{s}\right) \\
\text { (resp. } & \wedge_{q}^{-}(V)=T(V) /\left(W_{e}^{-}\right), & \left.S_{q}^{-}(V)=T(V) /\left(W_{s}^{-}\right)\right) .
\end{array}
$$

When $q=1$, these reduce to the usual exterior and symmetric algebras.
Proposition 4. (a) The k-algebra $\wedge_{q}(V)$ is defined by n generators v_{1}, \cdots, v_{n} and the following relations:
i) $v_{i}^{2}=0$, if $i \neq i^{\prime}$,
ii) $v_{j} v_{i}=-q^{-1} v_{i} v_{j}$, if $i<j, i \neq j^{\prime}$,
iii) $v_{i^{\prime}} v_{i}=-v_{i} v_{i^{\prime}}+\left(q^{-1}-q\right) \sum_{k<i} q^{i-k-1} v_{k} v_{k^{\prime}}$, if $i<i^{\prime}$,
iv) $v_{n_{0}}^{2}=\left(q^{-1 / 2}-q^{1 / 2}\right) \sum_{k<n_{0}} q^{n_{0}-k-1} v_{k} v_{k^{\prime}}$,
where $n_{0}=(n+1) / 2$, and iv) is required only when n is odd.
(b) The products $v_{i_{1}} \cdots v_{i_{r}}$ with $i_{1}<\cdots<i_{r}$ form a base for $\wedge_{q}(V)$.

Proposition 5. (a) The k-algebra $S_{q}(V)$ is defined by n generators v_{1}, \cdots, v_{n} and the following relations:
i) $v_{j} v_{i}=q v_{i} v_{j}$, if $i<j, i \neq j^{\prime}$,
ii) $v_{i^{\prime}} v_{i}=v_{i} v_{i^{\prime}}+\left(q^{-1}-q\right) \sum_{i<k<n_{0}} q^{i+1-k} v_{k} v_{k^{\prime}}$

$$
+q^{i+1-n_{0}}\left(q^{-1 / 2}-q^{1 / 2}\right) v_{n_{0}}^{2}, \quad \text { if } i<i^{\prime},
$$

where $n_{0}=(n+1) / 2$, and the last term in ii) is required only when n is odd.
(b) The products $v_{i_{1}} \cdots v_{i_{r}}$ with $i_{1} \leq \cdots \leq i_{r}$ form a base for $S_{q}(V)$.

The diamond lemma [1] is used to prove (b) of both propositions. Similar facts hold for $\wedge_{q}^{-}(V)$ and $S_{q}^{-}(V)$.

Take the usual coaction $\rho: T(V) \rightarrow T(V) \otimes \mathscr{M}_{n}, \rho\left(v_{j}\right)=\sum_{i} v_{i} \otimes x_{i j}$. Let J be the smallest bi-ideal of \mathscr{M}_{n} such that ρ induces homomorphisms of quotient algebras

$$
\wedge_{q}(V) \longrightarrow \wedge_{q}(V) \otimes \mathscr{M}_{n} / J \quad \text { and } \quad S_{q}(V) \longrightarrow S_{q}(V) \otimes \mathcal{M}_{n} / J
$$

(cf. [4]). Similarly, a bi-ideal J^{-}is associated with $\wedge_{q}^{-}(V)$ and $S_{q}^{-}(V)$.
Proposition 6. We put $\tilde{M}_{q}(n)=\mathscr{M}_{n} / J$ and $\tilde{M}_{q}^{-}(n)=\mathscr{M}_{n} / J^{-}$.
When $q=1$, both reduce to the polynomial algebra in $x_{i j}$.
Proposition 7. (a) $M_{q}(n)$ (resp. $M_{q}^{-}(n)$) is a quotient bialgebra of $\tilde{M}_{q}(n)\left(\operatorname{resp} . \tilde{M}_{q}^{-}(n)\right)$.
(b) We have
$A_{q}(n)=\tilde{M}_{q}(n) /\left(X X^{\prime}=I=X^{\prime} X\right) \quad$ and $\quad A_{q}^{-}(n)=\tilde{M}_{q}^{-}(n) /\left(X X^{\prime}=I=X^{\prime} X\right)$.
Since $\wedge_{q}(V)$ and $\wedge_{q}^{-}(V)$ are quantum grassmannian algebras of dimension n [4], some group-like elements det_{q} in $\tilde{M}_{q}(n)$ and $\operatorname{det}_{q}^{-}$in $\tilde{M}_{q}^{-}(n)$ are determined by the 1 -dimensional n-th components. We call them the quantum determinants of orthogonal and symplectic types. It is likely that they are central and the localizations $\tilde{M}_{q}(n)\left[\operatorname{det}_{q}^{-1}\right]$ and $\tilde{M}_{q}^{-}(n)\left[\left(\operatorname{det}_{q}^{-}\right)^{-1}\right]$ are Hopf algebras. If this is the case we can well-define new q-analogues of $G L, G L_{q}^{o}(n)$ and $G L_{q}^{S}(n)$ of orthogonal and symplectic types, as the quantum groups represented by the Hopf algebras.
4. Presentation of $\tilde{M}_{q}(3)$. Write the generating matrix of \mathcal{M}_{3} as

$$
X=\left(\begin{array}{ccc}
x & y & z \\
u & v & u^{\prime} \\
z^{\prime} & y^{\prime} & x^{\prime}
\end{array}\right)
$$

The defining relation for $\tilde{M}_{q}(3)$ consists of five types. Each type consists of several equations of the same form.
I. $y x=q x y$
and 7 similar ones for $(y, z),(x, u)$ etc. as (x, y),
II. $z x=x z-t y^{2}$ with $t=q^{1 / 2}-q^{-1 / 2}$
and 3 similar ones for $\left(z^{\prime}, y^{\prime}, x^{\prime}\right),\left(x, u, z^{\prime}\right)$ etc. as (x, y, z),
III. $\quad\binom{u y}{v x}=\left(\begin{array}{cc}0 & 1 \\ 1 & q-q^{-1}\end{array}\right)\binom{x v}{y u}$
and 3 similar ones for ($y, z ; v, u^{\prime}$) etc. as ($x, y ; u, v$),
IV. $\left(\begin{array}{c}u^{\prime} x \\ v y \\ u z\end{array}\right)=\left(\begin{array}{ccc}q-1 & -t & 1 \\ -t & 2-q^{-1} & t \\ 1 & t & q-1\end{array}\right)\left(\begin{array}{c}z u \\ y v \\ x u^{\prime}\end{array}\right)$
and 3 similar ones for ($u, v, u^{\prime} ; z^{\prime}, y^{\prime}, x^{\prime}$) as $\left(x, y, z ; u, v, u^{\prime}\right)$,
V. $\left(\begin{array}{c}u^{\prime} u \\ y^{\prime} y \\ x^{\prime} x \\ z^{\prime} z\end{array}\right)\left(\begin{array}{ccccc}0 & 0 & 0 & 1 & t \\ 0 & 0 & 1 & 0 & t \\ 0 & 1 & -t & -t & -t^{2} \\ 1 & 0 & t & -t & 0\end{array}\right)\left(\begin{array}{c}z z^{\prime} \\ x x^{\prime} \\ y y^{\prime} \\ u u^{\prime} \\ W\end{array}\right)$
with $W=x x^{\prime}-z z^{\prime}-t y y^{\prime}-v^{2}$ (consisting of a single equation).
$\tilde{M}_{q}(3)$ is a non-commutative polynomial algebra, i.e., the ordered products of entries of X (relative to an appropriate order) form a base.

There is the following "cofactor matrix"

$$
\tilde{X}=\left(\begin{array}{ccc}
x^{\prime} v-q y^{\prime} u^{\prime} & z y^{\prime}-q y x^{\prime} & -z v+q y u^{\prime} \\
-u x^{\prime}+q^{-1} z^{\prime} u^{\prime} & W+v^{2} & u z-q x u^{\prime} \\
-z^{\prime} v+q^{-1} y^{\prime} u & -x y^{\prime}+q_{\sim}^{-1} y z^{\prime} & x v-q^{-1} y u
\end{array}\right)
$$

This means we have $X \tilde{X}=\operatorname{det}_{q} I=\tilde{X} X$ in $\tilde{M}_{q}(3)$. Hence the quantum determinant det_{q} (of orthogonal type) is central and $\tilde{M}_{q}(3)\left[\operatorname{det}_{q}^{-1}\right]$ has an antipode. (The same is true for $n=5$.) Thus we can well-define $G L_{q}^{o}(3)$, and the quantum group $O_{q}(3)$ is its closed subgroup defined by the equation $X X^{\prime}=$ $I=X^{\prime} X$ with

$$
X^{\prime}=\left(\begin{array}{ccc}
x^{\prime} & q^{1 / 2} u^{\prime} & q z \\
q^{-1 / 2} y^{\prime} & v & q^{1 / 2} y \\
q^{-1} z^{\prime} & q^{-1 / 2} u & x
\end{array}\right)
$$

We put

$$
S O_{q}(3)=O_{q}(3) \cap S L_{q}^{o}(3)
$$

where $S L_{q}^{o}(3)$ is the quantum subgroup defined by $\operatorname{det}_{q}=1$.
There is an interesting relation between quantum groups $S L_{q}(2)$ (of type A) and $S O_{q_{2}}(3)$. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be the generating matrix of $A\left(S L_{q}(2)\right)$, the Hopf algebra of $S L_{q}(2)$.

Proposition 8. The algebra map $f: \mathscr{M}_{3} \rightarrow A\left(S L_{q}(2)\right)$,

$$
f(X)=\left(\begin{array}{ccc}
a^{2} & q^{1 / 2}\left(q+q^{-1}\right) a b & -\left(q+q^{-1}\right) b^{2} \\
q^{1 / 2} \alpha c & a d+q b c & -q^{1 / 2}\left(q+q^{-1}\right) b d \\
-c^{2} /\left(q+q^{-1}\right) & -q^{1 / 2} c d & d^{2}
\end{array}\right)
$$

(which is essentially the matrix W_{1} of [5], (10)) induces a Hopf algebra $\operatorname{map} A_{q^{2}}(3) \rightarrow A\left(S L_{q}(2)\right)$ sending $\operatorname{det}_{q^{2}}$ into 1 .

Thus we have a homomorphism of quantum groups $S L_{q}(2) \rightarrow S O_{q^{2}}(3)$. This is epimorphic, i.e., the corresponding Hopf algebra map is injective if $\operatorname{char}(k)=0$ and q is not a root of 1 .

During preparation of the work, the author had a chance to attend a talk by L. Takhtajan, where similar constructions and results were presented independently. For instance, our quantum group $O_{q}(n)$ was introduced under the symbol $S O_{q}(n)$. On the other hand, the notion of $\wedge_{q}(V)$ or det_{q} (of orthogonal or symplectic type) does not seem contained in his work. His results will appear in the paper by N. Reshetikhin, L. Takhtajan and L. Faddeev (in Russian) in Algebra and Analysis, vol. 1, 1989.

References

[1] G. Bergman: Adv. Math., vol. 29, pp. 178-218 (1978).
[2] V. Drinfel'd: Proc. ICM-86, pp. 798-820.
[3] M. Jimbo: Comm. Math. Physics, 102, 537-547 (1986).
[4] Yu. Manin: Ann. de l'Inst. Fourier, Tome 37, 191-205 (1987).
[5] T. Masuda et al.: C. R. Acad. Sci. Paris, 307, Ser. I, 559-564 (1988).
[6] M. Sweedler: Hopf Algebras. Benjamin, New York (1969).
[7] L. Faddeev, N. Resthetikhin, and L. Takhtajan: Quantization of Lie groups and Lie algebras (to appear in the volume dedicated to M. Sato).

