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We use quantum R matrices [3] to define quantum orthogonal and
symplectic groups in the same way as quantum GL and SL of type A [2, 4,
7]. We also consider embedding the quantum orthogonal and symplectic
groups Oq(n) and Spq(n) into sme q-analogues of GL(n). It seems difficult
to embed into GLq(n) of type A. We suggest there are two other types
(orthogonal and symplectic) of q-analogues of GL(n), and explain the em-
bedding of Oq(3) into GL(3), the quanum GL(3) of orthogonal type, in
detail.

We work over a field k, and fix an element q=/=0 in k. Let be the
free associative k-algebra on indeterminates x, i, ]=1, ..., n, with the
following bialgebra structure:

A(x) x(R)x, (x)=.
Let X denote the n n matrix (x) with entries in

1. Quantum orthogonal groups. For lin, put i’--n+ 1--i and

{io__(n/2)= if i=i’,
(n/2)- 1 if i)i’.

We assume q has a squre root q/ in k when n is odd. Let T denote the
following symmetric nn matrix.

q e.(R)e.+ eq(R)e+(q--q-9 ez(R)e.+ ae(R)e,,
iei’ ij,j’ ij,ij’ i’

where eq denote matrix units and

lq_q if i=i’ k,
i i:/:i’ k,at

(_q-1)(/._q--) if i’k.
We have

(T- q)(T+ q-1)(T-- ql-) --0.
Definition 1. Define bialgebras Mq(n) and Aq(n) by
Mq(n)=in/(X()T= TX()), Aq(n)--Mq(n)/(XX’=I=X’X),

where X()=(X(R)I)(I(R)X), and X’=(qJ-x,,)..
Proposition 2. (a) Aq(n) is a Hopf algebra, i.e., has an antipode.
(b) If q+l, there is a central group-like element in Mq(n) such

that XX’=yI=X’X. The localization M(n)[y-x] (with - group-like) is a
Hopf algebra, and A(n) coincides with the quotient Hopf algebra

Mq(n) / ff --1).
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The quantum orthogonal group O(n) is defined as the quantum group
corresponding to the Hopf algebra A(n). When q=l, this reduces to the
classical orthogonal group.

2. Quantum symplectic groups. Definition is similar as above. We
use T- instead of T. Assume n is even. For lin, put

=i-(n/2) -1, =1 if ii’,
=i--(n/2), =--1 if

We define T- by the same formula as T by using
if i k,a= (q_q_)(_,q__) if i’k.

We have
(T---q)(T- +q-)(T- + q--) =0.

Define quotient bialgebras M(n) and A(n) of qAn by using T- and X’----
(e,eq-*x,,) in Def. 1. Proposition 2 holds for M(n) and A(n). The
quantum symplectic group Spa(n) is defined as the quantum group corre-
sponding to the Hopf algebra A(n).

3. Quantum exterior and symmetric algebras. Manin [4] uses these
algebras to reformulate GL(n). We define their orthogonal and sympleetic
analogues. Let V=k with canonical base %, ..., v. We identify T and
T- as linear endomorphisms of V(R)V. Assume T (resp. T-) has three dis-
tinct eigenvalues q, --q-’, q- (resp. q, --q-’, --q--9. We put

W=Ker (T--q)Ker (T--q’-n), W,--Ker (T+q-1)
(resp. W[---Ker (T---q), W[--Ker (T- +q-)Ker (T- +q-’-)).
Definition 3. We put

Aq (V) T(V) (We), Zq (Y) T(V) (Ws)
(resp. /(V)=T(V)/(W[), S(V)=T(V)/(W[)).
When q--1, these reduce to the usual exterior and symmetric algebras.
Proposition 4. (a) The k-algebra/ (V) is defined by n generators

%, Vn and the following relations"
i) v=0, if ig=i’,

ii) vv, q-v,v, if i ], i =/=
q- v if i i’iii) v,v= vv,+(q- q)< v,,

1/2iv) v0=(q- _q,n) <0 q--vv’,

where n0=(n+ 1)/2, and iv) is required only when n is odd.
(b) The products v,,. .v, with i. i form a base for/q (V).
Proposition 5. (a) The k-algebra Sq(V) is defined by n generators

%, ..., v and the following relations"
i) vv=qvv, if i], i=/=]’,

q+i-vv,ii) v,v vv,E(q q)
-t- q* -no(q / /---q )Vo, ifii’,

where n0--(n+ 1)/2, and the last term in ii) is required only when n is odd.
(b) The products v,. v with i_. _i form a base for Sq(V).
The diamond lemma [1] is used to prove (b) of both propositions.

Similar facts hold for A(V) and S(V).
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Take the usual coaction p: T(V)-->T(V))n, p(v)--i vi(x. Let J
be the smallest bi-ideal of /n such that p induces homomorphisms of quo-
tient algebras

/ (V) > (V)(R)t/J and S(V) ;S(V)(R)I/J
(cf. [4]). Similarly, bi-ideal J- is associated with A (V) and S(V).

Proposition 6. We put Mq(n)=ln/J and M(n)--/n/J-.
When q= 1, both reduce to the polynomial algebra in x.
Proposition 7. (a) Mq(n) (resp. M(n)) is a quotient bialgebra of

M(n) (resp. M(n)).
(b) We have
A(n)=M(n)/(XX’=I--X’X) and A(n)=M(n)/(XX’=I--X’X).
Since A (V) and A (V) are quantum grassmannian algebras of di-

mension n [4], some group-like elements det in M(n) and det in M(n)
are determined by the l-dimensional n-th components. We call them the
quantum determinants of orthogonal and symplectic types. It is likely that
they are central and the localiztions M(n)[det] and M(n)[(det)-] are
Hopf algebras. If this is the case we. can well-define new q-analogues of
GL, GLq(n) and GLq(n) of orthogonal and symplectic types, as the quantum
groups represented by the Hopf algebras.

4. Presentation of MC). Write the generating matrix of I/ as

Z yt X

The defining relation or M(3) consists of five types.
of several equations of the same form.

I.

II.

III.

Each type consists

yx=qxy
and 7 similar ones for (y, z), (x, u) etc. as (x, y),
zx=xz--ty with t=
and 3 similar ones for (z’, y’, x’), (x, u, z’) etc. as (x, y, z),

yu
and 3 similar ones for (y, z; v, u’) etc. as (x, y; u, v),

vy --t 2--q- t yv
uz 1 t q-- 1 xu’

and 3 similar ones for (u, v, u’ z’, y’, x’) as (x, y, z; u, v, u’),

with W xx’- zz’- tyy’- v (consisting of a single equation).
Mq(3) is a non-commutative polynomial algebra, i.e., the ordered

products of entries of X (relative to an appropriate order) form a base.
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There is the following "cofactor matrix"

[ xv-- qyu’ zy-qyx --zv + qyu’\
X= I-- ux’+ q- z’u’ W+v uz-- qxu’ .

zv+ q-yu xy + q-yz xv q-yu /

This means we have XX=detq I=XX in Mq(3). Hence the quantum deter-
minant det (of orthogonal type) is central and Mq(3)[det] has an antipode.
(The same is true for n=5.) Thus we can well-define GLq(3), and the
quantum group Oq(3) is its closed subgroup defined by the equation XX’=
I X’X with

x q/u qz
X
__

q-my v qmy
q- z’ q- /2u x

We put
SOq(3)--Oq(3) SLq(3)

where SLq(3) is the quantum subgroup defined by det= 1.
There is an interesting relation between quantum groups SLq(2) (o

type A) andSOq.(3). Let(ca bd) be the generating rnatrix of A(SLq(2)),
the Hop algebra of SLq(2).

Proposition 8. The algebra map f: t3-A(SLq(2)),

( a q’n(q+q-,)ab --(q+d-’)b2d)f(X) q/2ac ad+qbc _q/2(q q-’)b
--c/ (q-t-q-) --q/2cd

(which is essentially the matrix W1 of [5], (10)) induces a Hopf algebra
map Aq(3)-A(SLq(2)) sending detq into 1.

Thus we have a homomorphism o2 quantum groups SLq(2)-SOq(3).
This is epimorphic, i.e., the corresponding Hopf algebra map is injective
if char (k)=0 and q is not a root o 1.

During preparation of the work, the author had a chance to attend
a talk by L. Takhtajan, where similar constructions and results were
presented independently. For instance, our quantum group Oq(n) was
introduced under the symbol SOq(n). On the other hand, the notion of
/q (V)or detq (of orthogonal or symplectic type) does not seem contained
in his work. His results will appear in the paper by N. Reshetikhin,
L. Takhtajan and L. Faddeev (in Russian) in Algebra and Analysis, vol. 1,
1989.
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