13. A Geometric Study on Systems of First Order Differential Equations

By Kazushige Ueno
Tokyo University of Fisheries
(Communicated by Kôsaku Yosida, m. J. A., Feb. 13, 1989)

1. Introduction. Let $J^{1}\left(\boldsymbol{R}^{n}, \boldsymbol{R}^{m}\right)$ be the jet space of 1-jets $j_{x}^{1}(f)$ of local maps f of \boldsymbol{R}^{n} to \boldsymbol{R}^{m}. Let $\left\{x_{1}, \cdots, x_{n}\right\}$ (resp. $\left\{u_{1}, \cdots, u_{m}\right\}$) be the canonical coordinate system on \boldsymbol{R}^{n} (resp. \boldsymbol{R}^{m}). Then we can introduce the coordinate system $\left\{x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{m}, \cdots, p_{j}^{i}, \cdots\right\}$ on $J^{1}\left(\boldsymbol{R}^{n}, \boldsymbol{R}^{m}\right)$ associated with $\left\{x_{1}, \cdots x_{n}, u_{1}, \cdots, u_{m}\right\}$ given by $p_{j}^{i}=\partial u_{i} / \partial x_{j}$. Let π_{1} (resp. π_{2}) be the usual projection of $J^{1}\left(\boldsymbol{R}^{n}, \boldsymbol{R}^{m}\right)$ onto \boldsymbol{R}^{n} (resp. $\left.\boldsymbol{R}^{m}\right)$. In the following we assume that $n=m=2$ and consider a system of differential equations

$$
\left\{\begin{array}{l}
F_{1}(p) \equiv \alpha_{1}(x) p_{1}^{1}+\beta_{1}(x) p_{1}^{2}+\alpha_{2}(x) p_{2}^{1}+\beta_{2}(x) p_{2}^{2}=0, \tag{E}\\
F_{2}(p) \equiv \gamma_{1}(x) p_{1}^{1}+\delta_{1}(x) p_{1}^{2}+\gamma_{2}(x) p_{2}^{1}+\delta_{2}(x) p_{2}^{2}=0
\end{array}\right.
$$

on $J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$. Denote by $\mathcal{S}(E)$ the set of local solutions of E and set $S(E)=$ $\left\{j_{x}^{1}(f) ; f \in \mathcal{S}(E)\right.$ and $x \in$ the domain of $\left.f\right\}$ and $I(E)=\left\{p \in J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right) ; F_{1}(p)=\right.$ $\left.F_{2}(p)=0\right\}$. Then, in general, we have $I(E) \supset S(E)$.

Let us consider the category $\tilde{\mathcal{C}}$ of systems of differential equations E which satisfy the following properties around $p_{o} \in J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$:
(1) $I(E)=S(E)$,
(2) $\operatorname{det}\left(\begin{array}{cc}\alpha_{i} & \beta_{i} \\ \gamma_{i} & \delta_{i}\end{array}\right) \neq 0 \quad(i=1,2)$,
(3) $\quad\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right)\left(\gamma_{2} \delta_{1}-\gamma_{1} \delta_{2}\right)\left(\beta_{1} \delta_{2}-\beta_{2} \delta_{1}\right) \neq 0$.

Denote by $\mathcal{A}(E)$ the pseudogroup of local transformations ϕ on R^{2} such that, for any $s \in \mathcal{S}(E)$, if $\phi \circ s$ is defined, then $\phi \circ s \in \mathcal{S}(E)$. $\mathcal{A}(E)$ is called the automorphism pseudogroup of E. Then, according to [2], for any element $E \in \tilde{\mathcal{C}}$, we have

Proposition 1.1. The system of defining equations of $\mathcal{A}(E)$ around $x_{o}=\pi_{1}\left(p_{o}\right)$ is given by

$$
\left\{\begin{array}{l}
\partial \phi_{1} / \partial u_{1}=a(x)\left(\partial \phi_{1} / \partial u_{2}\right)+\partial \phi_{2} / \partial u_{2}, \\
\partial \phi_{2} / \partial u_{1}=b(x)\left(\partial \phi_{1} / \partial u_{2}\right)
\end{array}\right.
$$

where $\phi=\left(\phi_{1}, \phi_{2}\right) \in \mathcal{A}(E)$ and $a(x)=\left(\beta_{1} \delta_{2}-\beta_{2} \delta_{1}\right)^{-1}\left(\beta_{1} \gamma_{2}-\alpha_{2} \delta_{1}+\alpha_{1} \delta_{2}-\beta_{2} \gamma_{1}\right), b(x)=$ $\left(\beta_{1} \delta_{2}-\beta_{2} \delta_{1}\right)^{-1}\left(\alpha_{2} \gamma_{1}-\alpha_{1} \gamma_{2}\right)$.

We set $\mathcal{C}=\{E \in \tilde{\mathcal{C}} ; a(x)$ and $b(x)$ are constant $\}$. The purpose of this note is to classify systems of differential equations belonging to \mathcal{C} from the geometrical viewpoint using the couple of real numbers (a, b) which is called the structure vector of $E \in \mathcal{C}$.
2. Preliminary lemma. Let us consider the 4 -dimensional Euclidean space R^{4} with the canonical coordinate system $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and a vector field $W=\left(a v_{1}+v_{2}\right)\left(\partial / \partial v_{1}\right)+b v_{1}\left(\partial / \partial v_{2}\right)+\left(a v_{3}+v_{4}\right)\left(\partial / \partial v_{3}\right)+b v_{3}\left(\partial / \partial v_{4}\right)$ where a and
b are arbitrary real constants. Denote by \boldsymbol{P}^{3} the 3 -dimensional real projective space and let π be the canonical projection of $\boldsymbol{R}^{4}-\{0\}$ onto \boldsymbol{P}^{3}.

Lemma 2.1. To the vector field W on \boldsymbol{R}^{4}, there corresponds a vector field X on \boldsymbol{P}^{3} such that, for any $\tilde{p} \in \boldsymbol{R}^{4}-\{0\}$, we have $\pi_{*}\left(W_{\tilde{p}}\right)=X_{p}$ where $p=$ $\pi(\widetilde{p})$.

The proof is easily done by using the inhomogeneous coordinate system.
3. Statement of results. For any local transformation ϕ on \boldsymbol{R}^{2}, we define the lift $\phi^{(1)}$ of ϕ to $J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$ by $\phi^{(1)}\left(j_{x}^{1}(f)\right)=j_{x}^{1}(\phi \circ f)$. Then we can define the pseudogroup $\mathcal{A}(E)^{(1)}$ on $J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$ which is generated by $\left\{\phi^{(1)} ; \phi \in\right.$ $\mathcal{A}(E)\}$. Similarly we can define the lift $X^{(1)}$ to $J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$ of any local vector field X on \boldsymbol{R}^{2}. A vector field X is called an $\mathcal{A}(E)$-vector field if the local 1-parameter group of local transformations ϕ_{t} generated by X is included in $\mathcal{A}(E)$. Denote by $\mathcal{L}(E)$ the sheaf on R^{2} of germs of local $\mathcal{A}(E)$-vector fields. Then we can define the sheaf $\mathcal{L}(E)^{(1)}$ on $J^{1}\left(\boldsymbol{R}^{2}, R^{2}\right)$ of germs of vector fields $X^{(1)}$ where X is any local cross-section of $\mathcal{L}(E)$.

A function f defined around $p \in J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$ is called a differential invariant of $\mathcal{A}(E)$ if $Z f=0$ for any $Z \in \mathcal{L}(E)_{p}^{(1)}$ which is the stalk of $\mathcal{L}(E)^{(1)}$ on p.

Proposition 3.1. Let $E \in \mathcal{C}$ with the structure vector (a, b). Then a function f given around $p \in J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right)$ is a differential invariant of $\mathcal{A}(E)$ if and only if f satisfies the following relations around p :

$$
\begin{aligned}
W^{E}(f) \equiv & \left(a p_{1}^{1}+p_{1}^{2}\right)\left(\partial f / \partial p_{1}^{1}\right)+b p_{1}^{1}\left(\partial f / \partial p_{1}^{2}\right) \\
& +\left(a p_{2}^{1}+p_{2}^{2}\right)\left(\partial f / \partial p_{2}^{1}\right)+b p_{2}^{1}\left(\partial f / \partial p_{2}^{2}\right)=0, \\
Z(f) \equiv & p_{1}^{1}\left(\partial f / \partial p_{1}^{1}\right)+p_{1}^{2}\left(\partial f / \partial p_{1}^{2}\right)+p_{2}^{1}\left(\partial f / \partial p_{2}^{1}\right)+p_{2}^{2}\left(\partial f / \partial p_{2}^{2}\right)=0, \\
& \partial f / \partial u_{1}=0, \quad \partial f / \partial u_{2}=0 .
\end{aligned}
$$

As for the proof, see [2, Proposition 6.2].
W^{E} and Z are considered as vector fields on $J_{x z}^{1}=\left\{p \in J^{1}\left(\boldsymbol{R}^{2}, \boldsymbol{R}^{2}\right) ; \pi_{1}(p)=x\right.$, $\left.\pi_{2}(p)=z\right\} \cong R^{4}$ and we can prove that $\pi_{*}(Z)=0$ and by Lemma 2.1 we have the vector field $X^{E}=\pi_{*}\left(W^{E}\right)$ on $\boldsymbol{P}^{3} . \quad X^{E}$ is called the characteristic vector field of $E \in \mathcal{C}$.

Proposition 3.2. Assume that $b \neq 0$. Then X^{E} admits a singular point if and only if $a^{2}+4 b \geqq 0$.

This is proved by the local expression of X^{E}.
Let E be an element in \mathcal{C} with the structure vector $(a, b), b \neq 0$. Denote by P^{E} the set of nonsingular points of X^{E}. Then P^{E} is open and dense in \boldsymbol{P}^{3}. If $a^{2}+4 b<0$, then by Proposition 3.2 we have $\boldsymbol{P}^{E}=\boldsymbol{P}^{3}$. The vector field X^{E} gives a foliation \mathscr{F}^{E} on P^{E} such that any leaf of \mathscr{F}^{E} is an integral curve of X^{E} ([1]).

Definition 3.1. Let \mathscr{F} be a foliation of $\operatorname{codim} q$ on a manifold M given by the following transverse structure ($\left\{U_{\alpha}, f_{\alpha}\right\},\left\{\gamma_{\alpha \beta}\right\},\left\{\boldsymbol{R}_{\alpha}^{q}\right\}$) where
i) $\left\{U_{\alpha}\right\}$ is an open covering of M,
ii) $f_{\alpha}: U_{\alpha} \rightarrow \boldsymbol{R}_{\alpha}^{q}$ is a submersion,
iii) $f_{\alpha}=\gamma_{\alpha \beta} \circ f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$ where $\gamma_{\alpha \beta}: \boldsymbol{R}_{\alpha}^{q} \rightarrow \boldsymbol{R}_{\beta}^{q}$ are local diffeomorphisms.
\mathscr{F} is called an algebraic foliation if each $\gamma_{\alpha \beta}$ is a rational map i.e. there exist polynomials $r_{\alpha \beta}^{i}\left(x_{1}, \cdots, x_{q}\right)(i=1, \cdots, q)$ and $s_{\alpha \beta}^{j}\left(x_{1}, \cdots, x_{q}\right)(j=1, \cdots, q)$ such that $s_{\alpha \beta}^{j}\left(x_{1}, \cdots, x_{q}\right) \neq 0$ for any j and any $\left(x_{1}, \cdots, x_{q}\right) \in f_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ and that $\gamma_{\alpha \beta}^{i}=r_{\alpha \beta}^{i} / s_{\alpha \beta}^{i}$ where $\gamma_{\alpha \beta}=\left(\gamma_{\alpha \beta}^{1}, \cdots, \gamma_{\alpha \beta}^{q}\right)$.

Let $(a(E), b(E))$ denote the structure vector of $E \in \mathcal{C}$. We set $\mathcal{C}^{\prime}=$ $\{E \in \mathcal{C} ; b(E) \neq 0\}, \quad \mathcal{C}_{+}^{\prime}=\left\{E \in \mathcal{C}^{\prime} ; a(E)^{2}+4 b(E)>0\right\}, \quad \mathcal{C}_{0}^{\prime}=\left\{E \in \mathcal{C}^{\prime} ; a(E)^{2}+4 b(E)\right.$ $=0\}$ and $\mathcal{C}_{-}^{\prime}=\left\{E \in \mathcal{C}^{\prime} ; a(E)^{2}+4 b(E)<0\right\}$. Then our main results are

Theorem 3.3. Let $E \in \mathcal{C}^{\prime}$. Then the foliation \mathscr{P}^{E} on P^{E} is an algebraic foliation.

Theorem 3.4. $E \in \mathcal{C}^{\prime}$ is elliptic if and only if $E \in \mathcal{C}_{-}^{\prime}$.
Theorem 3.5. Let E_{1} and E_{2} be in \mathcal{C}^{\prime}. Then the foliation $\mathscr{F}^{E_{1}}$ on $P^{E_{1}}$ is isomorphic to the foliation $\mathscr{F}^{E_{2}}$ on $P^{E_{2}}$ if and only if both E_{1} and E_{2} belong to the same one of the three classes $\mathcal{C}_{+}^{\prime}, \mathcal{C}_{0}^{\prime}$ and \mathcal{C}_{-}^{\prime}.
4. Proof of Theorem 3.3. For $\tilde{U}_{1}=\left\{\tilde{p} \in \boldsymbol{R}^{4}-\{0\} ; v_{1}(\tilde{p}) \neq 0\right\}$, let $\{x, y, z\}$ be the coordinate system on $U_{1}=\pi\left(\tilde{U}_{1}\right) \subset \boldsymbol{P}^{3}$ associated with $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. We choose a point $p_{o} \in U_{1}$ satisfying $\left(x^{2}+a x-b\right)\left(p_{o}\right) \neq 0$. Then $p_{o} \in P^{E}$ because it is proved that X^{E} is written on U_{1} by $X^{E}=\left(-x^{2}-a x+b\right)(\partial / \partial x)+$ $(z-x y)(\partial / \partial y)+(-x z-a z+b y)(\partial / \partial z)$. We set $\bar{U}_{1}=\left\{p \in P^{E} \cap U_{1} ;\left(x^{2}+a x-b\right)\right.$ $(p) \neq 0\}$. Then, by setting $\bar{I}_{1}^{a b}=(x y-z) /\left(x^{2}+a x-b\right)$ and $\bar{J}_{1}^{a b}=(a z+x z-b y) /$ $\left(x^{2}+a x-b\right)$, the map $\bar{f}_{1}: \bar{U}_{1} \rightarrow \boldsymbol{R}^{2}$ defined by $\bar{f}_{1}(p)=\left(\bar{I}_{1}^{a b}(p), \bar{J}_{1}^{a b}(p)\right)$ is a submersion. Note that $\pi^{*}\left(\bar{I}_{1}^{a b}\right)$ and $\pi^{*}\left(\bar{J}_{1}^{a b}\right)$ are differential invariants of $\mathcal{A}(E)$. If $p \in \bar{U}_{1} \cap P^{E}$ satisfies $\left(x^{2}+a x-b\right)(p)=0$, then it is proved that $(z-x y)(p) \neq 0$. By setting $\hat{I}_{1}^{a b}=(x y-z) /\left\{(x y-z)+\left(x^{2}+a x-b\right)\right\}$ and $\hat{J}_{1}^{a b}=(a z+x z-b y) /\{(x y$ $\left.-z)+\left(x^{2}+a x-b\right)\right\}$, the map $\hat{f}_{1 p}: \hat{U}_{1 p} \rightarrow \boldsymbol{R}^{2}$ defined on a neighborhood $\hat{U}_{1 p}$ of p by $\hat{f}_{1 p}(q)=\left(\hat{I}_{1}^{a b}(q), \hat{J}_{1}^{a b}(q)\right)$ is a submersion. Thus we get an open covering $\left\{\bar{U}_{i}, \hat{U}_{i p} ; p \in U_{i} \backslash \bar{U}_{i}, i=1,2,3,4\right\}$ of P^{E} and submersions $\bar{f}_{i}: \bar{U}_{i} \rightarrow R^{2}$ and $\hat{f}_{i p}$: $\hat{U}_{i p} \rightarrow R^{2}$. It is proved that we have

$$
\begin{aligned}
& \tilde{\bar{I}}_{3}^{a b}=\bar{I}_{1}^{a b} /\left\{b\left(\bar{I}_{1}^{a b}\right)^{2}-a \bar{I}_{1}^{a b} \bar{J}_{1}^{a b}-\left(\bar{J}_{1}^{a b}\right)^{2}\right\}, \\
& \bar{J}_{3}^{a b}=-\left(a \bar{I}_{1}^{a b}+\bar{J}_{1}^{a b}\right) /\left\{b\left(\bar{I}_{1}^{a b}\right)^{2}-a \bar{I}_{1}^{a b} \bar{J}_{1}^{a b}-\left(\bar{J}_{1}^{a b}\right)^{2}\right\}, \\
& \bar{I}_{2}^{a b}=\bar{I}_{1}^{a b}, \quad \bar{J}_{2}^{a b}=-a \bar{I}_{1}^{a b}-\bar{J}_{1}^{a b} .
\end{aligned}
$$

By continuing these arguments, it is proved that we get the sets $\left\{\left(\bar{U}_{i}, \bar{f}_{i}\right)\right.$, $\left.\left(\hat{U}_{i p}, \hat{f}_{i p}\right) ; 1 \leqq i \leqq 4, p \in U_{i} \backslash \bar{U}_{i}\right\}$ and $\left\{\gamma_{i j}, \gamma_{i p}, \gamma_{i p j q} ; 1 \leqq i, j \leqq 4, p \in U_{i} \backslash \bar{U}_{i}, q \in\right.$ $\left.U_{j} \backslash \bar{U}_{j}\right\}$ such that $\bar{f}_{i}=\gamma_{i j} \circ \bar{f}_{j}, \bar{f}_{i}=\gamma_{i p} \circ \hat{f}_{i p}$ and $\hat{f}_{i p}=\gamma_{i p j q} \circ \hat{f}_{j q}$ where $\gamma_{i j}, \gamma_{j q}$ and $\gamma_{i p j q}$ are rational maps and that they give an algebraic foliation on P^{E} which is just the foliation \mathscr{F}^{E}. This is the outline of the proof.
5. Proof of Theorem 3.4. E is said to be elliptic if, for any $\left(t_{1}, t_{2}\right)$ $\in \boldsymbol{R}^{2}-\{0\}$, the matrix $t_{1} M_{1}+t_{2} M_{2}, M_{i}=\left(\begin{array}{cc}\alpha_{i} & \beta_{i} \\ \gamma_{i} & \delta_{i}\end{array}\right)$, is nonsingular. Since $\operatorname{det}\left(t_{1} M_{1}+t_{2} M_{2}\right)=\left(\alpha_{1} \delta_{1}-\beta_{1} \gamma_{1}\right) t_{1}^{2}+\left(\alpha_{1} \delta_{2}+\alpha_{2} \delta_{1}-\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right) t_{1} t_{2}+\left(\alpha_{2} \delta_{2}-\beta_{2} \gamma_{2}\right) t_{2}^{2}$, we see that E is elliptic if and only if $\left(\alpha_{1} \delta_{2}+\alpha_{2} \delta_{1}-\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)^{2}-4\left(\alpha_{1} \delta_{1}-\beta_{1} \gamma_{1}\right)\left(\alpha_{2} \delta_{2}-\right.$ $\left.\beta_{2} \gamma_{2}\right) \equiv\left(\beta_{1} \delta_{2}-\beta_{2} \delta_{1}\right)^{2}\left(\alpha^{2}+4 b\right)<0$. This proves Theorem 3.4 because $E \in \mathcal{C}^{\prime} \subset \tilde{\mathcal{C}}$ means $\beta_{1} \delta_{2}-\beta_{2} \delta_{1} \neq 0$.
6. Proof of Theorem 3.5. It is easy to prove that, if $\mathscr{E}^{E_{1}}$ is isomorphic to $\mathscr{F}^{E_{2}}$, then both E_{1} and E_{2} belong to the same class. Conversely
we assume that they are in the same class. If we can find a linear transformation ϕ on R^{4} satisfying $\phi_{*}\left(W_{1}\right)=\lambda W_{2}+\sigma Z$ for some real numbers λ and σ, then ϕ induces an isomorphism of $\mathscr{F}^{E_{1}}$ to $\mathscr{P}^{E_{2}}$. In particular, it is sufficient to find $\phi=\left(c_{j}^{i}\right)_{1 \leqq i, j \leqq 4}$ such that $c_{j}^{i}=0$ for $1 \leqq i \leqq 2,3 \leqq j \leqq 4$ and for $3 \leqq$ $i \leqq 4,1 \leqq j \leqq 2$ and that

$$
\left\{\begin{array}{l}
c_{k}^{k} a_{1}+c_{k+1}^{k} b_{1}=\lambda\left(a_{2} c_{k}^{k}+c_{k}^{k+1}\right)+\sigma c_{k}^{k}, \quad c_{k}^{k+1}=\lambda b_{2} c_{k+1}^{k}+\sigma c_{k+1}^{k+1}, \tag{6.1}\\
c_{k}^{k+1} a_{1}+c_{k+1}^{k+1} b_{1}=\lambda b_{2} c_{k}^{k}+\sigma c_{k}^{k+1}, \quad c_{k}^{k}=\lambda\left(a_{2} c_{k+1}^{k}+c_{k+1}^{k+1}\right)+\sigma c_{k+1}^{k} \quad(k=1,3)
\end{array}\right.
$$

for some real numbers λ and σ.
We choose real numbers α and β satisfying $2 \alpha-\beta a_{1} \neq 0$ and $\alpha^{2}-a_{1} \alpha \beta-$ $b_{1} \beta^{2} \neq 0$ and set $A_{1}=2 \alpha-\beta a_{1}, A_{2}=\alpha a_{1}+2 \beta b_{1}$ and $B=-\alpha^{2}+a_{1} \alpha \beta+b_{1} \beta^{2}$. Let us consider the algebraic equation with respect to δ

$$
\begin{equation*}
\left(a_{1}^{2}+4 b_{1}\right) A_{1}^{-2} B \delta^{2}+\left(a_{1}^{2}+4 b_{1}\right) a_{2} \beta A_{1}^{-2} B \delta+a_{2}^{2} A_{1}^{-2} B^{2}-b_{2} B=0 \tag{6.2}
\end{equation*}
$$

Then, under the condition $a_{1}^{2}+4 b_{1} \neq 0$, (6.2) admits a real solution δ if and only if $\left(a_{1}^{2}+4 b_{1}\right)\left(a_{2}^{2}+4 b_{2}\right) \geqq 0$. We set $\gamma=A_{1}^{-1}\left(\delta A_{2}+a_{2} B\right)$. Then α, β, γ and δ satisfy

$$
\begin{equation*}
A_{1} \gamma-A_{2} \delta=a_{2} B, \quad a_{1} \gamma \delta+b_{1} \delta^{2}-\gamma^{2}=-b_{2} B, \quad \alpha \delta-\beta \gamma \neq 0 . \tag{6.3}
\end{equation*}
$$

If $a_{1}^{2}+4 b_{1}=a_{2}^{2}+4 b_{2}=0$, (6.2) holds identically and we can choose γ and δ such that α, β, γ and δ satisfy (6.3).

Now we set $\gamma=-B /(\alpha \delta-\beta \gamma), \sigma=\left(a_{2} B+\alpha \delta a_{1}+\beta \delta b_{1}-\alpha \gamma\right) /(\alpha \delta-\beta \gamma)$. Then, by (6.3), we get $\left(-\gamma^{2}+\gamma \delta a_{1}+\delta^{2} b_{1}\right) /(\alpha \delta-\beta \gamma) b_{2}=\lambda$ and $\left(\alpha \gamma-\beta \gamma a_{1}-\beta \delta b_{1}\right) /(\alpha \delta-\beta \gamma)$ $=\sigma$. If we set $c_{k}^{k}=\alpha, c_{k+1}^{k}=\beta, c_{k}^{k+1}=\gamma$ and $c_{k+1}^{k+1}=\delta$, then λ and σ satisfy $(6.1)_{k}$. This is the outline of the proof.

References

[1] R. S. Palais: A global formulation of the Lie theory of transformation groups. Memoirs of A.M.S., no. 22 (1957).
[2] K. Ueno: On pseudoelliptic systems of first order differential equations. Nagoya Math. J., 108, 15-51 (1987).

