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"11. Introduction. Let Jl(Rn, R) be the jet space of 1-jets gx(f) of
local maps f of R to R. Let {xl, ..., Xn} (resp. {ul, ..., u}) be the canoni-
cal coordinate system on R (resp. R). Then we can introduce the coordi-
nate system {x, ..., x, u, ..., u, ..., p., } on J(R, R) associated with
{x,...xn, u,...,u} given by p}=u/3xj. Let 1 (resp. 2) be the usual
projection of JI(Rn, R) onto R (resp. R). In the following we assume
that n=m=2 and consider a system of differential equations

F(p)--(x)p+(x)p-- 2(x)p -+-/2(x)p 0,(E)
[F2(p) ’(x)p+(x)p+ ’2(x)p2+2(x)p 0

on jI(R, R). Denote by (E) the set of local solutions of E and set S(E)---
(]l(f) f e 3(E) and x e the domain of f} and I(E)= {p e jI(R, R2) FI(p)=
F(p)=0}. Then, in general, we have I(E)S(E).

Let us consider the category of systems of differential equations E
which satisfy the following properties around Po e J’(R, R)

(1) I(E)--S(E),

(a )=/=0 (i--1,2),(2) det .
(3) (-,)(r-r)(-) 0.

Denote by (E) the pseudogroup of local transformations on R such
that, for any s e 3(E), if s is defined, then s e 3(E). (E) is called
the automorphism pseudogroup of E. Then, according to [2], for any ele-
ment E e , we have

The system of defining equations of (E) aroundProposition 1.1.

Xo=(Po) is given by

/u,=a(x)(/u)+/
32/u,- b(x)(3

where =(,, 2) e (E) and 6b(X)--(/l(2--f12()-(1’2--02(-0(2--f12’,), b(x):
(1-l)-’(r,-,r).

We set C= {E e C; a(x) and b(x) are constant}. The purpose of this
note. is to classify systems of differential equations belonging to C from
the geometrical viewpoint using the couple of real numbers (a, b) which is
called the structure vector of E e C.

2. Preliminary lemma. Let us consider the 4-dimensional Euclidean
space R with the canonical coordinate system {v,, v, v, v} and a vector
field W: (av, +v)(/v,)+ bv,(/v)+(av+v)(3/v)+ bv(3/v) where a and
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b are arbitrary real constants. Denote by P the 3-dimensional real pro-
jective space and let u be the canonical projection of R--{0} onto P.

Lemma 2.1. To the vector field W on R, there corresponds a vector
field X on P such that, for any e R--{0}, we have .(W)=X where p-
().

The proof is easily done by using the inhomogeneous coordinate
system.

:). Statement of results, For any local transformation on R, we
1define the lit (1) of to J(R, R) by ()(](f))----]x(O f). Then we can

define the pseudogroup (E)) on J(R, R) which is generated by () e
(E)}. Similarly we can define the lift X() to J(R, R) o any local vector
field X on R. A vector field X is called an (E)-vector field if the local
1-parameter group of local transformations t generated by X is included
in (E). Denote by _L(E)the shea on R of germs o local (E)-vector
fields. Then we can define the sheaf _(E)) on J(R, R) of germs of vector
fields X) where X is any local cross-section o _L(E).

A unction f defined around p e jI(R, R) is called a differential in-
variant of (E) i Zf---O or any Z e .L(E)) which is the stalk of _(E)()

on p.
Proposition :.1. Let E e with the structure vector (a, b). Then a

function f given around p e J(R, R) is a differential invariant of (E) if
and only if f satisfies the following relations around p"

W(f) =_ (ap+p)(Sf p)+ bp(f p)
+(ap+p)(3f/3p)+ bp(3f/p)= O,

Z(f)-p(3f/p)-p(3f/3p)- p,(3f/ 3p)-p(3f 3p) O,
3f 3u---- O, 3f 3u-- O.

As for the proof, see [2, Proposition 6.2].
W and Z are considered as vector fields on Jx- (P e J(R, R) u(p)--x,

(p)=z}--R and we can prove that .(Z)=0 and by Lemma 2.1 we have
the vector field X-u.(W) on P. X is called the characteristic vector
field o E e .

Proposition :.2. Assume that b:O. Then X admits a singular
point if and only if a-4b

_
O.

This is proved by the local expression o X.
Let E be an element in 5" with the structure vector (a, b), b:/:0. Denote

by P the set of nonsingular points o X. Then P is open and dense in
P. If a-4bO, then by Proposition 3.2 we have P-P. The vector
field X gives a oliation on P" such that any lea o is an integral
cur,ve o X ([1]).

Definition :.1. Let be a oliation o codim q on a manifold M
given by the ollowing transverse structure ((U., f.}, (’., (R.q}) where

i) (U.} is an open covering o M,
ii) f." U.--R. is a submersion,
iii) f.=’. f on U. U where ’. R.--R are local diffeomorphisms.
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is called an algebraic oliation if each ’ is a rational map i.e. there
exist polynomials r.(x, ., x) (i 1, ., q) and s.(x, ., x) (]= 1, ., q)
such that s.(x,..., x)=/=O for any ] and ny (x,..., x)ef(U U) and

where’ =ff,... ’.q).that ’.---r./s.
Let (a(E), b(E)) denote the structure vector of E e C. We set

{E e C; b(E):/:0}, C’+:{E e C’ a(E)+4b(E)>O}, Cg:{E e C’ a(E)+4b(E)
0} and C’_ {E e C’ a(E) + 4b(E)k0}. Then our main results are
Theorem :.:. Let E e C’. Then the foliation on P is an alge-

braic foliation.
Theorem .4. E e C’ is elliptic if and only if E e
Theorem :.. Let E and E be in C’. Then the foliation on

is isomorphic to the foliation on P if and only if both E and E be-
long to the same one of the three classes C’+, C and C_.

4. Proof of Theorem 3.3. For U1 {15 e R--{0} vl(15)=/= 0}, let {x, y, z}
be the coordinate system on U-z()cP associated with {v, v, v, v}.
We choose a point Poe U satisfying (x+ax-b)(po)=O. Then Po e P be-
cause it is proved that X is written on U by X----(--x--ax+b)(/x)+
(z--xy)(/y)+(-xz--az+by)(3/3z). We set --{peP U; (x+ax--b)
(p)=/=0}. Then, by setting i=-(xy-z)/(x2+ax-b) and j=(az+xz-by)/
(x2+ax--b), the map fl" I-*R defined by f(p)=(l(p),Jb(p)) is a sub-
mersion. Note that *(i) and z*(J) are differential invariants of (E).
If p e P satisfies (x2+ax--b)(p)=O, then it is proved that (z--xy)(p)=O.
By setting [b=(xy--z)/{(xy--z)+(x+ax--b)} and ]=(az+xz--by)/{(xy
--z)/(x+ax--b)}, the map flp"/lp--R defined on a neighborhood 1 o p
by f(q)=(O(q), ](q)) is a submersion. Thus we get an open covering
{i,/tp P e U\, i-- 1, 2, 3, 4} of P and submersions f" -R and fp"
-R. It is proved that we have

i i / {b(i)- - -aI J (j?)},
ja _(ai?+j?) / {b(i?):-aI-J- (J?):}-
i=i[, j= -ai-j.

By continuing these arguments, it is proved that we get the sets {(,f),
(i,f) 1_i_4, p e U\} and [’, ’t, ’q 1i, ]4, p e U\, q e

V\} such that and f,=q ofq where ’, ’q and
q are rational maps and that they give an algebraic oliation on P
which is just the foliation . This is the outline of the proof.

5. Proof of Theorem :.4. E is said to be elliptic if, for any (t, t)

e R--{0} the matrix tM+tM, M=(. )is nonsingular. Since

det (tM + t:M) (--r)t +(+----)tlt. + (a--fl7Ot, we
see that E is elliptic if and only if (a+a----’)--4(a/--
J)--(/--):(a:+4b)0. This proves Theorem 3.4 because
means 6--.6:/: 0.

6. Proof of Theorem 3.5. It is easy to prove that, if ’ is isomor-
phic to , then both E and E belong to the same class. Conversely
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we assume that they are in the same class. If we can find a linear trans-
formation on R satisfying ,(W)-2W+aZ for some real numbers 2 and
a, then induces an isomorphism of 9 to 9. In particular, it is suffi-
cient to find =(c) such that c=O for 1<i<2,_ 3]4 and for 3<
ig4, 1gig2 and that

ca+c+bl=2( c+.c )+ac, =,,(6.1)
+ + + +

for some real numbers and a.

We choose real numbers a and satisfying 2a-a,0 and a--a,a--
b,0 and set A=2a-a,, A=aa+2b, and B=--a+a,a+b,. Let us
consider the algebraic equation with respect to 6
(6.2) (a}+4b)AfB6 + (a}+4b)a=Af=B6+aAT=B- b=B= O.
Then, under the condition a+4bl0, (6.2)admits a real solution 6 if and
only if (a+4bl)(a]+4b)O. We set 7=Afl(A+a=B). Then a, , 7 and
satisfy
(6.3) A17--A6=aB, a176+b1=--7 -b=B, --70.
If a}+4bl=a+4b=O, (6.2) holds identically and we can choose 7 and
such that a, fl, 7 and satisfy (6.3).

Now we set 7=-B/(a6-D, a=(aB+a6al+fl6bl--a7)/(a6--D. Then,
by (6.3), we get (-7+76a+6=b1)/(a6-7)b==2 and (a7--Ta1--661)/

+ 6 then and a satisfy (6.1)----a. If we set c =a, c+=, c+1= 7 and c+
This is the outline of the proof.

References

1 R. S. Palais: A global formulation of the Lie theory of transformation groups.
Memoirs of A.M.S., no. 22 (1957).

2 K. Ueno: On pseudoelliptic systems of first order differential equations. Nagoya
Math. J., 108, 15-51 (1987).


