13. A Geometric Study on Systems of First Order Differential Equations

By Kazushige UEN0 Tokyo University of Fisheries (Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1989)

1. Introduction. Let $J^1(\mathbb{R}^n, \mathbb{R}^m)$ be the jet space of 1-jets $j_x^1(f)$ of local maps f of \mathbb{R}^n to \mathbb{R}^m . Let $\{x_1, \dots, x_n\}$ (resp. $\{u_1, \dots, u_m\}$) be the canonical coordinate system on \mathbb{R}^n (resp. \mathbb{R}^m). Then we can introduce the coordinate system $\{x_1, \dots, x_n, u_1, \dots, u_m, \dots, p_j^i, \dots\}$ on $J^1(\mathbb{R}^n, \mathbb{R}^m)$ associated with $\{x_1, \dots, x_n, u_1, \dots, u_m\}$ given by $p_j^i = \partial u_i / \partial x_j$. Let π_1 (resp. π_2) be the usual projection of $J^1(\mathbb{R}^n, \mathbb{R}^m)$ onto \mathbb{R}^n (resp. \mathbb{R}^m). In the following we assume that n = m = 2 and consider a system of differential equations

(E)
$$\begin{cases} F_1(p) \equiv \alpha_1(x) p_1^1 + \beta_1(x) p_1^2 + \alpha_2(x) p_2^1 + \beta_2(x) p_2^2 = 0, \\ F_2(p) \equiv \gamma_1(x) p_1^1 + \delta_1(x) p_1^2 + \gamma_2(x) p_2^1 + \delta_2(x) p_2^2 = 0 \end{cases}$$

on $J^1(\mathbb{R}^2, \mathbb{R}^2)$. Denote by S(E) the set of local solutions of E and set $S(E) = \{j_x^1(f); f \in S(E) \text{ and } x \in \text{the domain of } f\}$ and $I(E) = \{p \in J^1(\mathbb{R}^2, \mathbb{R}^2); F_1(p) = F_2(p) = 0\}$. Then, in general, we have $I(E) \supset S(E)$.

Let us consider the category $\tilde{\mathcal{C}}$ of systems of differential equations E which satisfy the following properties around $p_o \in J^1(\mathbb{R}^2, \mathbb{R}^2)$:

- (1) I(E) = S(E),
- (2) det $\begin{pmatrix} \alpha_i & \beta_i \\ \gamma_i & \delta_i \end{pmatrix} \neq 0$ (i=1, 2),
- (3) $(\alpha_2\beta_1-\alpha_1\beta_2)(\gamma_2\delta_1-\gamma_1\delta_2)(\beta_1\delta_2-\beta_2\delta_1)\neq 0.$

Denote by $\mathcal{A}(E)$ the pseudogroup of local transformations ϕ on \mathbb{R}^2 such that, for any $s \in \mathcal{S}(E)$, if $\phi \circ s$ is defined, then $\phi \circ s \in \mathcal{S}(E)$. $\mathcal{A}(E)$ is called the automorphism pseudogroup of E. Then, according to [2], for any element $E \in \tilde{\mathcal{C}}$, we have

Proposition 1.1. The system of defining equations of $\mathcal{A}(E)$ around $x_o = \pi_1(p_o)$ is given by

$$\begin{cases} \partial \phi_1 / \partial u_1 = a(x)(\partial \phi_1 / \partial u_2) + \partial \phi_2 / \partial u_2, \\ \partial \phi_2 / \partial u_1 = b(x)(\partial \phi_1 / \partial u_2) \end{cases}$$

where $\phi = (\phi_1, \phi_2) \in \mathcal{A}(E)$ and $a(x) = (\beta_1 \delta_2 - \beta_2 \delta_1)^{-1} (\beta_1 \gamma_2 - \alpha_2 \delta_1 + \alpha_1 \delta_2 - \beta_2 \gamma_1), b(x) = (\beta_1 \delta_2 - \beta_2 \delta_1)^{-1} (\alpha_2 \gamma_1 - \alpha_1 \gamma_2).$

We set $\mathcal{C} = \{E \in \mathcal{C}; a(x) \text{ and } b(x) \text{ are constant}\}$. The purpose of this note is to classify systems of differential equations belonging to \mathcal{C} from the geometrical viewpoint using the couple of real numbers (a, b) which is called the structure vector of $E \in \mathcal{C}$.

2. Preliminary lemma. Let us consider the 4-dimensional Euclidean space \mathbf{R}^4 with the canonical coordinate system $\{v_1, v_2, v_3, v_4\}$ and a vector field $W = (av_1 + v_2)(\partial/\partial v_1) + bv_1(\partial/\partial v_2) + (av_3 + v_4)(\partial/\partial v_3) + bv_3(\partial/\partial v_4)$ where a and

b are arbitrary real constants. Denote by P^{3} the 3-dimensional real projective space and let π be the canonical projection of $R^{4} - \{0\}$ onto P^{3} .

Lemma 2.1. To the vector field W on \mathbb{R}^4 , there corresponds a vector field X on \mathbb{P}^3 such that, for any $\tilde{p} \in \mathbb{R}^4 - \{0\}$, we have $\pi_*(W_{\tilde{p}}) = X_p$ where $p = \pi(\tilde{p})$.

The proof is easily done by using the inhomogeneous coordinate system.

3. Statement of results. For any local transformation ϕ on \mathbb{R}^2 , we define the lift $\phi^{(1)}$ of ϕ to $J^1(\mathbb{R}^2, \mathbb{R}^2)$ by $\phi^{(1)}(j_x^1(f)) = j_x^1(\phi \circ f)$. Then we can define the pseudogroup $\mathcal{A}(E)^{(1)}$ on $J^1(\mathbb{R}^2, \mathbb{R}^2)$ which is generated by $\{\phi^{(1)}; \phi \in \mathcal{A}(E)\}$. Similarly we can define the lift $X^{(1)}$ to $J^1(\mathbb{R}^2, \mathbb{R}^2)$ of any local vector field X on \mathbb{R}^2 . A vector field X is called an $\mathcal{A}(E)$ -vector field if the local 1-parameter group of local transformations ϕ_t generated by X is included in $\mathcal{A}(E)$. Denote by $\mathcal{L}(E)$ the sheaf on \mathbb{R}^2 of germs of local $\mathcal{A}(E)$ -vector fields. Then we can define the sheaf $\mathcal{L}(E)^{(1)}$ on $J^1(\mathbb{R}^2, \mathbb{R}^2)$ of germs of vector fields $X^{(1)}$ where X is any local cross-section of $\mathcal{L}(E)$.

A function f defined around $p \in J^1(\mathbb{R}^2, \mathbb{R}^2)$ is called a differential invariant of $\mathcal{A}(E)$ if Zf=0 for any $Z \in \mathcal{L}(E)_p^{(1)}$ which is the stalk of $\mathcal{L}(E)^{(1)}$ on p.

Proposition 3.1. Let $E \in C$ with the structure vector (a, b). Then a function f given around $p \in J^1(\mathbb{R}^2, \mathbb{R}^2)$ is a differential invariant of $\mathcal{A}(E)$ if and only if f satisfies the following relations around p:

 $egin{aligned} W^{\scriptscriptstyle E}(f)\!\equiv\!(ap_1^1\!+p_1^2)(\partial f/\partial p_1^1)\!+bp_1^1(\partial f/\partial p_1^2)\ &+(ap_2^1\!+p_2^2)(\partial f/\partial p_2^1)\!+bp_2^1(\partial f/\partial p_2^2)\!=\!0,\ Z(f)\!\equiv\!p_1^1(\partial f/\partial p_1^1)\!+p_1^2(\partial f/\partial p_1^2)\!+p_2^1(\partial f/\partial p_2^1)\!+p_2^2(\partial f/\partial p_2^2)\!=\!0,\ &\partial f/\partial u_1\!=\!0, \qquad \partial f/\partial u_2\!=\!0. \end{aligned}$

As for the proof, see [2, Proposition 6.2].

 $W^{\mathbb{E}}$ and Z are considered as vector fields on $J_{xz}^{1} = \{p \in J^{1}(\mathbb{R}^{2}, \mathbb{R}^{2}); \pi_{1}(p) = x, \pi_{2}(p) = z\} \cong \mathbb{R}^{4}$ and we can prove that $\pi_{*}(Z) = 0$ and by Lemma 2.1 we have the vector field $X^{\mathbb{E}} = \pi_{*}(W^{\mathbb{E}})$ on \mathbb{P}^{3} . $X^{\mathbb{E}}$ is called the characteristic vector field of $E \in \mathcal{C}$.

Proposition 3.2. Assume that $b \neq 0$. Then X^{E} admits a singular point if and only if $a^{2}+4b \geq 0$.

This is proved by the local expression of X^{E} .

Let *E* be an element in *C* with the structure vector $(a, b), b \neq 0$. Denote by P^{E} the set of nonsingular points of X^{E} . Then P^{E} is open and dense in P^{3} . If $a^{2}+4b < 0$, then by Proposition 3.2 we have $P^{E}=P^{3}$. The vector field X^{E} gives a foliation \mathcal{F}^{E} on P^{E} such that any leaf of \mathcal{F}^{E} is an integral curve of X^{E} ([1]).

Definition 3.1. Let \mathcal{D} be a foliation of codim q on a manifold M given by the following transverse structure $(\{U_{\alpha}, f_{\alpha}\}, \{\gamma_{\alpha\beta}\}, \{R_{\alpha}^{q}\})$ where

- i) $\{U_{\alpha}\}$ is an open covering of M,
- ii) $f_{\alpha}: U_{\alpha} \rightarrow \mathbf{R}_{\alpha}^{q}$ is a submersion,
- iii) $f_{\alpha} = \gamma_{\alpha\beta} \circ f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$ where $\gamma_{\alpha\beta} : R^q_{\alpha} \to R^q_{\beta}$ are local diffeomorphisms.

 \mathcal{F} is called an algebraic foliation if each $\gamma_{\alpha\beta}$ is a rational map i.e. there exist polynomials $r^i_{\alpha\beta}(x_1, \dots, x_q)$ $(i=1, \dots, q)$ and $s^j_{\alpha\beta}(x_1, \dots, x_q)$ $(j=1, \dots, q)$ such that $s^j_{\alpha\beta}(x_1, \dots, x_q) \neq 0$ for any j and any $(x_1, \dots, x_q) \in f_{\beta}(U_{\alpha} \cap U_{\beta})$ and that $\gamma^i_{\alpha\beta} = r^i_{\alpha\beta}/s^i_{\alpha\beta}$ where $\gamma_{\alpha\beta} = (\gamma^i_{\alpha\beta}, \dots, \gamma^i_{\alpha\beta})$.

Let (a(E), b(E)) denote the structure vector of $E \in C$. We set $C' = \{E \in C; b(E) \neq 0\}, C'_{+} = \{E \in C'; a(E)^{2} + 4b(E) > 0\}, C'_{0} = \{E \in C'; a(E)^{2} + 4b(E) = 0\}$ and $C'_{-} = \{E \in C'; a(E)^{2} + 4b(E) < 0\}$. Then our main results are

Theorem 3.3. Let $E \in C'$. Then the foliation $\mathfrak{P}^{\mathbb{E}}$ on $P^{\mathbb{E}}$ is an algebraic foliation.

Theorem 3.4. $E \in C'$ is elliptic if and only if $E \in C'_{-}$.

Theorem 3.5. Let E_1 and E_2 be in C'. Then the foliation \mathfrak{P}^{E_1} on P^{E_1} is isomorphic to the foliation \mathfrak{P}^{E_2} on P^{E_2} if and only if both E_1 and E_2 belong to the same one of the three classes C'_+ , C'_0 and C'_- .

4. Proof of Theorem 3.3. For $\tilde{U}_1 = \{\tilde{p} \in \mathbb{R}^4 - \{0\}; v_1(\tilde{p}) \neq 0\}$, let $\{x, y, z\}$ be the coordinate system on $U_1 = \pi(\tilde{U}_1) \subset \mathbb{P}^3$ associated with $\{v_1, v_2, v_3, v_4\}$. We choose a point $p_o \in U_1$ satisfying $(x^2 + ax - b)(p_o) \neq 0$. Then $p_o \in \mathbb{P}^E$ because it is proved that X^E is written on U_1 by $X^E = (-x^2 - ax + b)(\partial/\partial x) + (z - xy)(\partial/\partial y) + (-xz - az + by)(\partial/\partial z)$. We set $\overline{U}_1 = \{p \in \mathbb{P}^E \cap U_1; (x^2 + ax - b)(p) \neq 0\}$. Then, by setting $\overline{I}_1^{ab} = (xy - z)/(x^2 + ax - b)$ and $\overline{J}_1^{ab} = (az + xz - by)/(x^2 + ax - b)$, the map $\overline{f}_1: \overline{U}_1 \rightarrow \mathbb{R}^2$ defined by $\overline{f}_1(p) = (\overline{I}_1^{ab}(p), \overline{J}_1^{ab}(p))$ is a submersion. Note that $\pi^*(\overline{I}_1^{ab})$ and $\pi^*(\overline{J}_1^{ab})$ are differential invariants of $\mathcal{A}(E)$. If $p \in \overline{U}_1 \cap \mathbb{P}^E$ satisfies $(x^2 + ax - b)(p) = 0$, then it is proved that $(z - xy)(p) \neq 0$. By setting $\hat{I}_1^{ab} = (xy - z)/((xy - z) + (x^2 + ax - b))$ and $\hat{J}_1^{ab} = (az + xz - by)/((xy - z) + (x^2 + ax - b))$ and $\hat{J}_1^{ab} = (az + xz - by)/((xy - z) + (x^2 + ax - b))$ by $\hat{f}_{1p}(q) = (\hat{I}_1^{ab}(q), \hat{J}_1^{ab}(q))$ is a submersion. Thus we get an open covering $\{\overline{U}_i, \widehat{U}_{ip}; p \in U_i \setminus \overline{U}_i, i = 1, 2, 3, 4\}$ of \mathbb{P}^E and submersions $\overline{f}_i: \overline{U}_i \rightarrow \mathbb{R}^2$ and \hat{f}_{ip} : $\hat{U}_{ip} \rightarrow \mathbb{R}^2$. It is proved that we have

$$ar{I}^{ab}_{3} = ar{I}^{ab}_{1} / \{b(ar{I}^{ab}_{1})^2 - aar{I}^{ab}_{1}ar{J}^{ab}_{1} - (ar{J}^{ab}_{1})^2\}, \ ar{J}^{ab}_{3} = -(aar{I}^{ab}_{1} + ar{J}^{ab}_{1}) / \{b(ar{I}^{ab}_{1})^2 - aar{I}^{ab}_{1}ar{J}^{ab}_{1} - (ar{J}^{ab}_{1})^2\}, \ ar{I}^{ab}_{2} = ar{I}^{ab}_{1}, \quad ar{J}^{ab}_{2} = -aar{I}^{ab}_{1} - ar{J}^{ab}_{1}.$$

By continuing these arguments, it is proved that we get the sets $\{(\overline{U}_i, \overline{f}_i), (\hat{U}_{ip}, \hat{f}_{ip}); 1 \leq i \leq 4, p \in U_i \setminus \overline{U}_i\}$ and $\{\gamma_{ij}, \gamma_{ip}, \gamma_{ipjq}; 1 \leq i, j \leq 4, p \in U_i \setminus \overline{U}_i, q \in U_j \setminus \overline{U}_j\}$ such that $\overline{f}_i = \gamma_{ij} \circ \overline{f}_j, \overline{f}_i = \gamma_{ip} \circ \hat{f}_{ip}$ and $\hat{f}_{ip} = \gamma_{ipjq} \circ \hat{f}_{jq}$ where γ_{ij}, γ_{jq} and γ_{ipjq} are rational maps and that they give an algebraic foliation on P^E which is just the foliation \mathfrak{P}^E . This is the outline of the proof.

5. Proof of Theorem 3.4. E is said to be elliptic if, for any $(t_1, t_2) \in \mathbb{R}^2 - \{0\}$, the matrix $t_1M_1 + t_2M_2$, $M_i = \begin{pmatrix} \alpha_i & \beta_i \\ \gamma_i & \delta_i \end{pmatrix}$, is nonsingular. Since det $(t_1M_1 + t_2M_2) = (\alpha_1\delta_1 - \beta_1\gamma_1)t_1^2 + (\alpha_1\delta_2 + \alpha_2\delta_1 - \beta_1\gamma_2 - \beta_2\gamma_1)t_1t_2 + (\alpha_2\delta_2 - \beta_2\gamma_2)t_2^2$, we see that E is elliptic if and only if $(\alpha_1\delta_2 + \alpha_2\delta_1 - \beta_1\gamma_2 - \beta_2\gamma_1)^2 - 4(\alpha_1\delta_1 - \beta_1\gamma_1)(\alpha_2\delta_2 - \beta_2\gamma_2) \equiv (\beta_1\delta_2 - \beta_2\delta_1)^2(a^2 + 4b) < 0$. This proves Theorem 3.4 because $E \in C' \subset \tilde{C}$ means $\beta_1\delta_2 - \beta_2\delta_1 \neq 0$.

6. Proof of Theorem 3.5. It is easy to prove that, if \mathcal{P}^{E_1} is isomorphic to \mathcal{P}^{E_2} , then both E_1 and E_2 belong to the same class. Conversely

we assume that they are in the same class. If we can find a linear transformation ϕ on \mathbb{R}^4 satisfying $\phi_*(W_1) = \lambda W_2 + \sigma Z$ for some real numbers λ and σ , then ϕ induces an isomorphism of $\mathcal{P}^{\mathbb{E}_1}$ to $\mathcal{P}^{\mathbb{E}_2}$. In particular, it is sufficient to find $\phi = (c_j^i)_{1 \leq i, j \leq 4}$ such that $c_j^i = 0$ for $1 \leq i \leq 2$, $3 \leq j \leq 4$ and for $3 \leq i \leq 4$, $1 \leq j \leq 2$ and that

(6.1)_k $\begin{cases} \overline{c_k^k a_1 + c_{k+1}^k b_1 = \lambda(a_2 c_k^k + c_k^{k+1}) + \sigma c_k^k}, & c_k^{k+1} = \lambda b_2 c_{k+1}^k + \sigma c_{k+1}^{k+1}, \\ c_k^{k+1} a_1 + c_{k+1}^{k+1} b_1 = \lambda b_2 c_k^k + \sigma c_k^{k+1}, & c_k^k = \lambda(a_2 c_{k+1}^k + c_{k+1}^{k+1}) + \sigma c_{k+1}^k & (k=1,3) \end{cases}$ for some real numbers λ and σ .

We choose real numbers α and β satisfying $2\alpha - \beta a_1 \neq 0$ and $\alpha^2 - a_1\alpha\beta - b_1\beta^2 \neq 0$ and set $A_1 = 2\alpha - \beta a_1$, $A_2 = \alpha a_1 + 2\beta b_1$ and $B = -\alpha^2 + a_1\alpha\beta + b_1\beta^2$. Let us consider the algebraic equation with respect to δ

(6.2) $(a_1^2 + 4b_1)A_1^{-2}B\delta^2 + (a_1^2 + 4b_1)a_2\beta A_1^{-2}B\delta + a_2^2A_1^{-2}B^2 - b_2B = 0.$

Then, under the condition $a_1^2+4b_1\neq 0$, (6.2) admits a real solution δ if and only if $(a_1^2+4b_1)(a_2^2+4b_2)\geq 0$. We set $\gamma = A_1^{-1}(\delta A_2+a_2B)$. Then α , β , γ and δ satisfy

(6.3) $A_1 \tilde{\tau} - A_2 \delta = a_2 B$, $a_1 \tilde{\tau} \delta + b_1 \delta^2 - \tilde{\tau}^2 = -b_2 B$, $\alpha \delta - \beta \tilde{\tau} \neq 0$. If $a_1^2 + 4b_1 = a_2^2 + 4b_2 = 0$, (6.2) holds identically and we can choose $\tilde{\tau}$ and δ such that α , β , $\tilde{\tau}$ and δ satisfy (6.3).

Now we set $\gamma = -B/(\alpha\delta - \beta\gamma)$, $\sigma = (a_2B + \alpha\delta a_1 + \beta\delta b_1 - \alpha\gamma)/(\alpha\delta - \beta\gamma)$. Then, by (6.3), we get $(-\gamma^2 + \gamma\delta a_1 + \delta^2 b_1)/(\alpha\delta - \beta\gamma)b_2 = \lambda$ and $(\alpha\gamma - \beta\gamma a_1 - \beta\delta b_1)/(\alpha\delta - \beta\gamma) = \sigma$. If we set $c_k^k = \alpha$, $c_{k+1}^k = \beta$, $c_k^{k+1} = \gamma$ and $c_{k+1}^{k+1} = \delta$, then λ and σ satisfy (6.1)_k. This is the outline of the proof.

References

- R. S. Palais: A global formulation of the Lie theory of transformation groups. Memoirs of A.M.S., no. 22 (1957).
- [2] K. Ueno: On pseudoelliptic systems of first order differential equations. Nagoya Math. J., 108, 15-51 (1987).