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1. Introduction. We use here standard notations in Nevanlinna
theory [3], [5].

Let f(z) be a meromorphic function. As usual, m(r, f), N(r, /), and
T(r, f) denote the proximity function, the counting function, and the char-
acteristic function of f(z), respectively. Let N(», f) be the counting func-
tion for distinct poles of f(z).

A function ¢(r), 0<r<<oco, is said to be S(r, f) if there is a set ECR*
of finite linear measure such that o(r)=0(T(r, f)) as r—oo, r ¢ E. A mero-
morphic function a(z) is said to be small with respect to f(z) if T(r,a)=

S(r, ). Let a,2), j=1, ---,n, be meromorphic functions. A function
w(2) is admissible with respect to a,(2), if T(r, a)=Sr, w), =1, -- -, n.
For a differential monomial M[w]=a(z)w(w)" ... (w™)* in w, we

put 7y=n+n+ - +n, and I'y=pn+(@p+Dn,+ - - - +(@p+mn,, and call
degree and weight-p of M{w], respectively. We write I'}, simply as I',.
Let Q2(2) be a differential polynomial with meromorphic coefficients:
Q[w]=§Mz[w]=§I a,(Rw(w)™ - - (W),

where a,(2) are meromorphic functions, I is a finite set of multi-indices 1=
(g, My - -+, my). We define degree 7, and weight-p 't of Q by 7o=max,c; 7y,
and ['j=max,., [y, respectively.

A meromorphic solution w(z) of the differential equation Q[w]=0 is
admissible solution, if w(z) is admissible w.r.t. a,(2), 1¢I.

2[w] is said to satisfy the condition (GL) if, for any p>1,
(GL) there is an indew i, such that 'y, > Iy, if i1,

This condition (GL) is due to Gackstatter-Laine [2], who investigated the
equation

1.1) w:io a,w  (0<m<2n),
and conjectured that it Woéld not admit any admissible solution if 1<m<
n—1. In this respect, Toda [7] proved the following theorem.

Theorem A. The differential equation (1.1) does not possess any
admissible solutions if 1<m<n—1, except for the case when n—m is a
divisor of n and (1.1) is of the following form:

W =a,, @)W+ o)™, where a is a constant.

Recently, Toda [8] studied more general differential equation
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1.2) Plw]*=3 a,)w’

with a differential polynomial P[w] instead of w’. He proved

Theorem B, If 1<m<n—1, the equation (1.2) does not possess any

admissible solutions except for the case when it is of the form
Plw]"=a,()(w+b(z)™.

In connection with the conjecture of Gackstatter-Laine and theorems
of Toda, we will study the following: Let H[w] and Flw] be differential
polynomials with meromorphic coefficients. Suppose the equation
(1.3) Hlw]*=F[w]
possesses an admissible solution. Find smallest integer n, such that, if
n>mn,, then the form of Flw] is decided.

By Theorems A and B, we see that n,=m+1 if Flw] is a (not differ-
ential) polynomial of degree m.

In this note, we will prove the following result.

Theorem 1. Let H[w], Plw] and Q[w] be differential polynomials with
meromorphic coefficients. Suppose H[w] and P[w] are not identically zero,
H{w] satisfies the condition (GL), and the equation
(1.4) Hw]"=w"P[w]+Q[w]
admits an admissible solution. If n>max {(I"p+m)/Ty, '+ r+m)} and
m—2>1",, then we have Q[w]=0.

2. Preliminary lemmas. We use the following notation w(z, g). Let
g(2) be meromorphic. w(z, g)=m if g(z) has a pole of order m at z,; w(z,, 9)
=0 if g(z)) # 0.

In the sequel, w=w(z) denotes a meromorphic function. Differential
polynomial of w with meromorphic coefficients is called simply as
d.p.m.c. of w.

Lemma 1 ([1], [4]). Let Plw] be a d.p.m.c. of w, then

m(r, PlwD) <7 pm(r, w)+S(r, w).
Lemma 2 ([4]). Let ¥lw] be a d.p.m.c. of w with the form
Ulw]=w"Plw] -+ Q[w],
where Plw] and Q[w] are d.p.m.c. Suppose Qwl=£0 and I'y<n—2. Then
T, )X N@, w)+ T+ DN, 1))+ S0, w).

Lemma 3 ([3], [6]). Let Q[w] and Q*[w] be d.p.m.c. of w with coeffi-
cients a, and af, respectively, and G(w) be a polynomial of w with constant
coefficients. Suppose that m(r, a,)) and m(r, af) are S(r,w). If 7,<7, and
Qlw]=G(w)Q*[w], then m(r, Q*[w])=_S(r, w).

Lemma 4. Let Qlw] and P[w] be d.p.m.c. of w and G(w) be a poly-
nomial of w with constant coefficients. Suppose Plw]=0. If the equation

2.1 Qlwl=G(w)Plw]
possesses an admissible solution w(z), then we have
2.2) To(degree of )< T,

Proof. Suppose 7,>I",. Let z, be a pole of w which is neither zero
nor pole for coefficients of Plw] and Q[w]. Put o(z, w)=p>1 and
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w(2,, P[w]) =v, then w(z,, Gw)P[w])=pls+v. By (2.1) and w(z, Qlw)<pul'y,
we get ufo+v<puly, i.e., v<p(l'g—74) <0, which is a contradiction. Hence
such a pole 2z, of w does not exist, which implies N(r, w)=S(r, w), since w
is admissible. Therefore
2.3) N(r, PlwD)<I p»N(r, w)+S(r, w)=S8(r, w).
By the assumption 7,>1"¢>7,. By Lemma 3 we get
2.4) T(r, Plw))=S(r, w).
By (2.3) and (2.4),
(2.5) T(r, PlwD)=S(r, w).
By (2.1), (2.5), and Lemma 1,
76T (r, w)+S(r, w)=T(r, Gw)Plw]) =T(r, Qlw])
=m(r, QwD +N(r, QIwD) <7 m(r, w)+I'(N(r, w) +S(r, w)
< T(r, w)+S(r, w),
and hence (7, — 1)) T(r, w)<S(r, w), a contradiction. Thus 17,<I,.

3. Proof of Theorem 1. Suppose Q[w]=0. Put
3.1 Vlw]=w"Plw] + Q[w].

Since m>TI",, the admissible solution w(z) of (1.5) does not satisfy the equa-
tion w"Plw]+ Qlw]=0 by Lemma 4.

Let 2, be a pole of w which is neither zero nor pole for coefficients of
Hlw], Plw] and Q[w]. Put w(z, w)=p. By the condition (GL) for H[w]
and by the assumption in the theorem

%yTgéw(zo, H[w]n) =w(zo’ w).<.. fi(m +FP) <n[»¢TH?
which is a contradiction. Hence there is not such a z,, hence
3.2 N(r, w)=S(r, w).

We note that T(r, H{w])=0(T(r, w)) and

3.3) T(r, O)=T(r, Hlwl")=nT(r, Hlw])+S(r, H[w]).

We obtain by Lemma 1 and (3.2)

3.9 T(r, )=m(r, O)+NQ@, D)L T p+m)m(r, w)+ 1 xN(r, w)
+8@r, WL T p+m)T(r, w)+S(r, w).

By Lemma 2 and (3.2)

B.5) T, <N, w)+T ot 1)N(r, —;7)+S<r, w)
<(pt 1)N(r, %) 80, )< [+ DT, H)+S(r, w).

From (8.3), (8.4) and (3.5)
T(r, )< p+1)/n]T(r, ¥)+S(r, w)
<[@p+ DT p+m) /01T (r, w)+S(r, w),
hence {1—[7,+1)7p+m)/nl}T(r, w)<S(r,w), which is a contradiction.
Thus our theorem is proved.
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